STUDY OF THE OPTIMUM FILTRATION FOR MAINTAINING IMAGE QUALITY AND REDUCING THE DOSE ON THE RADIODIAGNOSTIC

Authors

  • Rizka Indra Prasetya Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia
  • Mahrus Salam Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia https://orcid.org/0000-0003-0983-6923
  • Heryuli Aditesna Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia
  • Vemi Ridantami Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia
  • Wuntat Oktawijaya Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia
  • Bilqis Latifah Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia
  • Isti Rahmawati Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia
  • Fath Priyadi Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia
  • Fajar Panuntun Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia
  • Selvi Lutfiana Putri Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia
  • Siswanti Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia
  • Nurhidayat Supriyanto Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia
  • Jasmi Budi Utami Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia
  • Thomas Candra Adrian Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia
  • Sofyan Adisaputra Directorate of Nuclear Facility Management – National Research and Innovation Agency (BRIN), Jl. Babarsari PO BOX 6101 YKBB, Special Region of Yogyakarta, 55281, Indonesia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.22883

Keywords:

X-ray, Image, Filtration, SNR, CNR

Abstract

X-ray medical imaging serves as a cornerstone in diagnostic procedures, offering essential insights into anatomical structures conditions. The optimization of image quality and patient safety in x-ray imaging is carried out by using appropriate filtration for x-ray beam. This paper presents a comparative analysis of aluminium (Al), copper (Cu) filters and combination of both materials for evaluating the effectiveness in attenuating low-energy photons and minimizing patient radiation exposure while maintaining image quality. This study investigates the TOR CDR phantom as an object with the exposure factor of 70 kV and 5 mAs, examining variations in thickness and filter materials to evaluate low and high contrast imaging procedures. The obtained dose values are compared with Signal-to-Noise Ratio (SNR) as well as Contrast-to-Noise Ratio (CNR) values, which represent the quality of the image to evaluate the impact of filtration on diagnostic image quality. The results indicate that for low contrast imaging a 5 mm Al filter is recommended, where it increases the SNR value by 41.3%, the dose decreases by 65.4%, but it may reduce the contrast by 31.7%. Meanwhile, for the high contrast imaging the recommended filter variation is 0.1 mm Al and 1 mm Cu. It can increase the SNR value by 52.7%, the dose decreases by 55.4%, but it may reduce CNR by 6.7%.

References

IAEA. 2014. Protection and Safety of Radiation Sources: International Basic Safety Standards, IAEA GSR Part 3.

M. Körner, C. H. Weber, S. Wirth, K.-J. Pfeifer, M. F. Reiser, and M. Treitl. 2007. Advances in Digital Radiography: Physical Principles and System Overview. Radio Graphics. 27(3): 675–686. Doi: 10.1148/rg.273065075.

S. Mc Fadden, T. Roding, G. de Vries, M. Benwell, H. Bijwaard, and J. Scheurleer. 2018. Digital Imaging and Radiographic Practise in Diagnostic Radiography: An Overview of Current Knowledge and Practice in Europe. Radiography. 24(2): 137–141. Doi: https://doi.org/10.1016/j.radi.2017.11.004.

E. Babikir, A. Al-Mallah, M. Al-Sehlawi, N. Tamam, and A. Sulieman. 2020. Patient Radiation Dose and Image Quality in Plain Radiography: An Assessment of Three Common Procedures in Ten Hospitals. Radiation Physics and Chemistry. 173: 108888. Doi: https://doi.org/10.1016/j.radphyschem.2020.108888.

I. I. Suliman. 2020. Estimates of Patient Radiation Doses in Digital Radiography Using DICOM Information at a Large Teaching Hospital in Oman. J Digit Imaging. 33(1): 64–70. Doi: 10.1007/s10278-019-00199-y.

M. Uffmann and C. Schaefer-Prokop. 2009. Digital Radiography: The Balance between Image Quality and Required Radiation Dose. Eur J Radiol. 72(2): 202–208. Doi: https://doi.org/10.1016/j.ejrad.2009.05.060.

R. M. Sanchez, E. Vano, P. Salinas, N. Gonzalo, J. Escaned, and J. M. Fernández. 2021. High Filtration in Interventional Practices Reduces Patient Radiation Doses but Not Always Scatter Radiation Doses. Br J Radiol. 94(1117): 20200774. Doi: 10.1259/bjr.20200774.

A. Papadakis, V. Giannakaki, E. Hatzidaki, and J. Damilakis. 2023. The Effect of Added Filtration on Radiation Dose and Image Quality in Digital Radiography of Newborns. Pediatr Radiol. 53: 1–9. Doi: 10.1007/s00247-023-05698-3.

C. Martin. 2007. The Importance of Radiation Quality for Optimisation in Radiology. Biomed Imaging Interv J. 3: e38. Doi: 10.2349/biij.3.2.e38.

V. Balac, R. Grossman, R. Griswold, and D. Bowman. 2023. Optimizing Contrast Resolution in Digital Chest Radiography by Varying Copper Filtration and kVp. Radiol Technol. 95: 94–104.

J. Yan, J. Schaefferkoetter, M. Conti, and D. Townsend. 2016. A Method to Assess Image Quality for Low-dose PET: Analysis of SNR, CNR, Bias and Image Noise. Cancer Imaging. 16. Doi: 10.1186/s40644-016-0086-0.

L. Lanca and A. Silva. 2012. Image Quality in Diagnostic Radiology in Digital Imaging Systems for Plain Radiography. New York: Springer. Doi: https://doi.org/10.1007/978-1-4614-5067-2_6.

H. A. Sianturi, J. Marbun, and L. Sidauruk. 2020. Analysis of X-ray Quality in Thickness Variations using Copper and Aluminum Filter on Effective Dosage. AIP Conf Proc. 2221(1): 110028. Doi: 10.1063/5.0003187.

L. Sidauruk, H. A. Sianturi, M. Rianna, T. Sembiring, and D. A. Barus. 2018. Determination of Half Value Layer (HVL) Value on X-Rays Radiography with using Aluminum, Copper and Lead (Al, Cu, and Sn) Attenuators. J Phys Conf Ser. 1116(3): 32032. Doi: 10.1088/1742-6596/1116/3/032032.

M. Siraj et al. 2023. Potentials of Additional Copper Filtration on Radiation Dose and Image Quality for Adults Underwent Digital Chest X-ray Imaging in Dubai Health Authority – UAE. Radiography. 29(3): 552–556. Doi: https://doi.org/10.1016/j.radi.2023.03.005.

J. Jones and A. Murphy. 2018. Radiographic Contrast. Radiopaedia.org. Doi: 10.53347/rID-58718.

E. U. Ekpo, A. C. Hoban, and M. F. McEntee. 2014. Optimisation of Direct Digital Chest Radiography using Cu Filtration. Radiography. 20(4): 346–350. Doi: https://doi.org/10.1016/j.radi.2014.07.001.

M. Salam and A. J. Puspitasari. 2023. Study of the Dose Curve to Determine the Dose Received by a Patient on The Diagnostic Radiology. J Teknol. 85(3): 111–116.

BAPETEN. 2018. Compliance Tests in X-Ray Radiology Diagnostic and Intervention: Chairman Regulation of BAPETEN No. 2 Year 2018.

R. I. Prasetya and G. B. Suparta. 2022. Location Analysis for Additional Permanent Radiation Detector in XRay Radiography Unit. IJASEIT. 12(3): 1080–1084.

K. Alzyoud, P. Hogg, B. Snaith, K. Flintham, and A. England. 2019. Impact of Body Part Thickness on AP Pelvis Radiographic Image Quality and Effective Dose. Radiography. 25(1): e11–e17. Doi: https://doi.org/10.1016/j.radi.2018.09.001.

A. E. Papadakis, V. Giannakaki, E. Hatzidaki, and J. Damilakis. 2023. The Effect of Added Filtration on Radiation Dose and Image Quality in Digital Radiography of Newborns. Pediatr Radiol. 53(10): 2060–2068. Doi: 10.1007/s00247-023-05698-3.

Houfrar J, Ludwig B, Bister D, Nienkemper M, Abkai C, and Venugopal A. 2022. The Effects of Additional Filtration on Image Quality and Radiation Dose in Cone Beam CT: An In Vivo Preliminary Investigation. Biomed Res Int. 2022: 7031269.

Downloads

Published

2025-08-22

Issue

Section

Science and Engineering

How to Cite

STUDY OF THE OPTIMUM FILTRATION FOR MAINTAINING IMAGE QUALITY AND REDUCING THE DOSE ON THE RADIODIAGNOSTIC. (2025). Jurnal Teknologi (Sciences & Engineering), 87(5), 899-906. https://doi.org/10.11113/jurnalteknologi.v87.22883