EXCELLENT REMOVAL COPPER PERFORMANCE BY COXFE3-XO4/ZNO/AC NANOCOMPOSITE
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.23126Keywords:
CoxFe3-xO4/ZnO/AC, nanocomposite, iron sand, copper adsorbentAbstract
In recent years, the rapidly growing industry has also harmed aquatic life due to water pollution, especially heavy metal pollution. Herein, the CoxFe3-xO4/ZnO/activated carbon (AC) nanocomposite was synthesized via the coprecipitation and sol–gel methods to apply as a copper adsorbent. X-ray diffractometry revealed the cubic spinel crystal structure of CoxFe3-xO4 and the hexagonal wurtzite structure of ZnO. Examination under scanning electron microscopy depicted the morphology of the samples as comprising spheres, sheets, and chunks. The spherical nanoparticles exhibited an average particle size of 45.08–65.36 nm. Fourier transform infrared spectra confirmed the presence of all components within the nanocomposite, including CoxFe3-xO4, ZnO, and AC. Analysis using a vibrating sample magnetometer indicated the superparamagnetic nature of the nanocomposite, 11.069–23.514 emu/g with magnetic saturation value. To assess the influence of Co composition, adsorption experiments were conducted with varying contact time intervals. Remarkably, these experiments demonstrated the copper removal efficiencies of samples S1-S4 was 9969%, 99.86%, 99.76% and 99.92%, respectively, while the best copper removal efficiency of 99.96% was achieved by sample S5, with 11.00 mg/g maximum adsorption capacity. Thus, the CoxFe3-xO4/ZnO/AC nanocomposite demonstrates significant potential as a novel material for copper removal in adsorption applications.
References
Bai, Q., Huang, C., Ma, S., Gong, B., Ou, J. 2023. Rapid Adsorption and Detection of Copper Ions in Water by Dual-functional Ion-imprinted Polymers Doping with Carbon Dots. Sep Purif Technol. 315: 123666. Doi: 10.1016/j.seppur.2023.123666.
Shahrashoub, M., Bakhtiari, S. 2021. The Efficiency of Activated Carbon/magnetite Nanoparticles Composites in Copper Removal: Industrial Waste Recovery, Green Synthesis, Characterization, and Adsorption-desorption Studies. Microporous Mesoporous Mater. 311: 110692. Doi: 10.1016/j.micromeso.2020.110692.
Deng, H., Li, Q., Huang, M., Li, A., Zhang, J., Li, Y., et al. 2020. Removal of Zn(II), Mn(II) and Cu(II) by Adsorption Onto Banana Stalk Biochar: Adsorption Process and Mechanisms. Water Sci Technol. 82(12): 29622974. Doi: 10.2166/wst.2020.543.
Berlian, A. I., Raharjo, M., Dewanti, N. A. Y. 2023. Analysis of Water Quality and Environmental Health Risks of Copper (Cu) to Fish in Progo River Magelang Regency. IAIP Conference Proceedings. Doi:10.1063/5.0126500
Government Regulation of the Republic of Indonesia Number 22 of 2021 concerning the Implementation of Environmental Protection and Management (2021), https://peraturan.bpk.go.id/Details/161852/pp-no-22-tahun-2021.
Alizadeh, M., Peighambardoust, S. J., Foroutan, R., Azimi, H., Ramavandi, B. 2022. Surface Magnetization of Hydrolyzed Luffa Cylindrica Biowaste with Cobalt Ferrite Nanoparticles for Facile Ni2+ Removal from Wastewater. Environ Res. 212: 113242. Doi: 10.1016/j.envres.2022.113242.
Ai, L., Li, M., Li, L. 2011. Adsorption of Methylene Blue from Aqueous Solution with Activated Carbon/Cobalt Ferrite/Alginate Composite Beads: Kinetics, Isotherms, and Thermodynamics. J Chem Eng Data. 56(8): 34753483. Doi:10.1021/je200536h.
Tatarchuk, T., Mironyuk, I., Kotsyubynsky, V., Shyichuk, A., Myslin, M., Boychuk, V. 2020. Structure, Morphology and Adsorption Properties of Titania Shell Immobilized onto Cobalt Ferrite Nanoparticle Core. J Mol Liq. 297: 111757. Doi: 10.1016/j.molliq.2019.111757.
Khoshkerdar, I., Esmaeili, H. 2019. Adsorption of Cr (III) and Cd (II) Ions using Mesoporous Cobalt-Ferrite Nanocomposite from Synthetic Wastewater. Acta Chim Slov. 15: 208216. Doi:10.17344/acsi.2018.4795.
Tatarchuk, T., Shyichuk, A., Sojka, Z., Gryboś, J., Naushad, Mu, Kotsyubynsky, V., et al. 2021. Green Synthesis, Structure, Cations Distribution and Bonding Characteristics of Superparamagnetic Cobalt-zinc Ferrites Nanoparticles for Pb(II) Adsorption and Magnetic Hyperthermia Applications. J Mol Liq. 328: 115375. Doi: 10.1016/j.molliq.2021.115375
Vamvakidis, K., Kostitsi, T. M., Makridis, A., Dendrinou-Samara, C. 2020. Diverse Surface Chemistry of Cobalt Ferrite Nanoparticles to Optimize Copper(II) Removal from Aqueous Media. Materials. 13(7): 1537. Doi: 10.3390/ma13071537.
Asri, N. S., Nurdila, F. A., Kato, T., Iwata, S., Suharyadi, E. 2018. Removal Study of Cu(II), Fe(II) and Ni(II) Ions from Wastewater using Polymer-Coated Cobalt Ferrite (CoFe2O4) Magnetic Nanoparticles Adsorbent. J Phys Conf Ser. 1091: 012016. Doi: 10.1088/1742-6596/1091/1/012016.
Wu, X., Wang, W., Li, F., Khaimanov, S., Tsidaeva, N., Lahoubi, M. 2016. PEG-assisted Hydrothermal Synthesis of CoFe2O4 Nanoparticles with Enhanced Selective Adsorption Properties for Different Dyes. Appl Surf Sci. 389: 10031011. Doi: 10.1016/j.apsusc.2016.08.053.
Shaba, E. Y., Jacob, J. O., Tijani, J. O., Suleiman, M. A. T. 2021. A Critical Review of Synthesis Parameters Affecting the Properties of Zinc Oxide Nanoparticle and its Application in Wastewater Treatment. Appl Water Sci. 11(2): 48. Doi:10.1007/s13201-021-01370-z.
Leiva, E., Tapia, C., Rodríguez, C. 2021. Highly Efficient Removal of Cu(II) Ions from Acidic Aqueous Solution using ZnO Nanoparticles as Nano-Adsorbents. Water. 13(21): 2960. Doi:10.3390/w13212960.
Ahmad, S. Z. N., Salleh, W. N. W., Yusof, N., Mohd Yusop, M. Z., Hamdan, R., Awang, N. A., et al. 2021. Pb(II) Removal and Its Adsorption from Aqueous Solution using Zinc Oxide/graphene Oxide Composite. Chem Eng Commun. 208(5): 646660. Doi: 10.1080/00986445.2020.1715957.
Goyal, P., Chakraborty, S., Misra, S. K. 2018. Multifunctional Fe3O4-ZnO Nanocomposites for Environmental Remediation Applications. Environ Nanotechnol Monit Manag. 10: 2835. Doi: 10.1016/j.enmm.2018.03.003.
Islam, M. S., Ang, B. C., Gharehkhani, S., Afifi, A. B. M. 2016. Adsorption Capability of Activated Carbon Synthesized from Coconut Shell. Carbon Lett. 20: 19. Doi: 10.5714/CL.2016.20.001.
Kali, A., Amar, A., Loulidi, I., Jabri, M., Hadey, C., Lgaz, H., et al. 2022. Characterization and Adsorption Capacity of Four Low-cost Adsorbents based on Coconut, Almond, Walnut, and Peanut Shells for Copper Removal. Biomass Convers Biorefinery. 14: 3655–3666. Doi:10.1007/s13399-022-02564-4.
Qin, Q., Wu, X., Chen, L., Jiang, Z., Xu, Y. 2018. Simultaneous Removal of Tetracycline and Cu(II) by Adsorption and Coadsorption Using Oxidized Activated Carbon. RSC Adv. 8(4): 17441752. Doi:10.1039/C7RA12402C.
Yahya, M. M. A., Subadra, StUI, Saputro, R. E., Taufiq, A. Yogihati, C. I., Sunaryono, et al. 2023. Investigation of the Optical, Magnetic, and Radar Absorption Characteristics of CoxFe3-xO4/ZnO/graphite Nanocomposites. Mater Sci Semicond Process. 165: 107683. Doi: 10.1016/j.mssp.2023.107683.
Adebayo, A., 2017. Removal of Heavy Metals from Petroleum Refinery Effluent using Coconut Shell-based Activated Carbon. Card Int J Eng Emerg Sci Discov. 2: 102117.
Yuliantika, D., Taufiq, A., Hidayat, A., Sunaryono, Hidayat, N, Soontaranon S. 2019. Exploring Structural Properties of Cobalt Ferrite Nanoparticles from Natural Sand. IOP Conf Ser Mater Sci Eng. 515: 012047. Doi: 10.1088/1757-899X/515/1/012047.
Yuliantika, D., Taufiq, A., Hidayat, A., Sunaryono, Hidayat N., Soontaranon, S. 2019. Exploring Structural Properties of Cobalt Ferrite Nanoparticles from Natural Sand. IOP Conf Ser Mater Sci Eng. 515: 012047. Doi:10.1088/1757-899X/515/1/012047.
Subadra, SUI, Taufiq, A., Sunaryono, S., Hidayat, A., Mufti, N., Susanto, H., et al. 2022. Synthesis and Characterisation of Fe3O4/MWCNT/ZnO Nanocomposites Covered by a Soft Template as a New Antibacterial Agent. Adv Nat Sci Nanosci Nanotechnol. 13(3): 035010. Doi:10.1088/2043-6262/ac8de8.
H. Phong, L. T., H. Manh, D., H. Nam, P., D. Lam, V., X. Khuyen, B., S. Tung, B., et al. 2022. Structural, Magnetic and Hyperthermia Properties and Their Correlation in Cobalt-doped Magnetite Nanoparticles. RSC Adv. 12(2): 698707. Doi:10.1039/D1RA07407E.
Kumar, P., Pathak, S., Singh, A., Kuldeep, Khanduri, H., Wang, X., et al. 2021. Optimization of Cobalt Concentration for Improved Magnetic Characteristics and Stability of CoxFe3-xO4 Mixed Ferrite Nanomagnetic Fluids. Mater Chem Phys. 265: 124476. Doi: 10.1016/j.matchemphys.2021.124476.
Vegard L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. 1921. Z Für Phys. 5(1): 1726. Doi: 10.1007/BF01349680.
Taufiq, A., Ulya, H. N., Yogihati, C. I., Sunaryono, Hidayat, N., Mufti, N., et al. 2020. Effects of ZnO Nanoparticles on the Antifungal Performance of Fe3O4/ZnO Nanocomposites Prepared from Natural Sand. Adv Nat Sci Nanosci Nanotechnol. 11(4): 045004. Doi: 10.1088/2043-6254/abb8c6.
Shen, W., Ren, B., Cai, K., Song, Y. Fei, Wang, W. 2019. Synthesis of Nonstoichiometric Co0.8Fe2.2O4/reduced Graphene Oxide (rGO) Nanocomposites and Their Excellent Electromagnetic Wave Absorption Property. J Alloys Compd. 774: 9971008. Doi: 10.1016/j.jallcom.2018.09.361.
Golabiazar, R., Omar, Z. A., Ahmad, R. N., Hasan, S. A., Sajadi, S. M. 2020. Synthesis and Characterization of Antibacterial Magnetite-activated Carbon Nanoparticles. J Chem Res. 44(12):8087. Doi: 10.1177/1747519819883884.
Ramya V., Murugan D., Lajapathirai C., Sivasamy A. 2018. Activated Carbon (prepared from secondary sludge biomass) Supported Semiconductor Zinc Oxide Nanocomposite Photocatalyst for Reduction of Cr(VI) under Visible Light Irradiation. J Environ Chem Eng. 6(6): 73277337. Doi: 10.1016/j.jece.2018.08.055.
Yadav, V. K., Ali, D., Khan, S. H., Gnanamoorthy, G., Choudhary, N., Yadav, K. K., et al. 2020. Synthesis and Characterization of Amorphous Iron Oxide Nanoparticles by the Sonochemical Method and Their Application for the Remediation of Heavy Metals from Wastewater. Nanomaterials. 10(8): 1551. Doi: 10.3390/nano10081551.
Ali, O. I., Zaki, E. R., Abdalla, M. S., Ahmed, S. M. 2023. Mesoporous Ag-functionalized Magnetic Activated Carbon-based Agro-waste for Efficient Removal of Pb(II), Cd(II), and Microorganisms from Wastewater. Environ Sci Pollut Res. 30(18): 5354853565. Doi: 10.1007/s11356-023-26000-w.
Yahya, MohMA. 2020. Pengaruh Substitusi Co terhadap Struktur, Gugus Fungsi, dan Sifat Optik Nanokomposit CoxFe3-xO4/Grafit/ZnO. http://repository.um.ac.id/id/eprint/148596.
Intan Subadra STU, Sutiami, R., Taufiq, A., Diantoro, M., Sunaryono, Arif, et al. 2019. Preparation and Characterization of Magnetite Nanoparticles Combined with Polyaniline and Activated Carbon. IOP Conf Ser Earth Environ Sci. 276(1): 012041. Doi: 10.1088/1755-1315/276/1/012041.
Taufiq, A., Saputro, R. E., Yuliantika, D., Sunaryono, S., Diantoro, M., Hidayat, A., et al. 2020. Excellent Antimicrobial Performance of Co-doped Magnetite Double-Layered Ferrofluids Fabricated from Natural Sand. J King Saud Univ - Sci. 32(7): 30323038. Doi: 10.1016/j.jksus.2020.08.009.
Chandel, N., Sharma, K., Sudhaik, A., Raizada, P., Hosseini-Bandegharaei, A., Thakur, V. K., et al. 2020. Magnetically Separable ZnO/ZnFe2O4 and ZnO/CoFe2O4 Photocatalysts Supported onto Nitrogen Doped Graphene for Photocatalytic Degradation of Toxic Dyes. Arab J Chem. 13(2): 43244340. Doi: 10.1016/j.arabjc.2019.08.005.
Mohammadi, Z., Attaran, N., Sazgarnia, A., Shaegh, S. A. M., Montazerabadi, A. 2020. Superparamagnetic Cobalt Ferrite Nanoparticles as T2 Contrast Agent in MRI: In vitro Study. IET Nanobiotechnol. 14(5): 396404. Doi: 10.1049/iet-nbt.2019.0210
Yasemian, A. R., Kashi, M. A., Ramazani, A. 2020. Exploring the Effect of Co Concentration on Magnetic Hyperthermia Properties of CoxFe3−xO4 Nanoparticles. Mater Res Express. 7(1): 016113.
Mukadam, M. D., Yusuf, S. M., Sharma, P., Kulshreshtha, S. K. 2004. Particle Size-dependent Magnetic Properties of γ-Fe2O3 Nanoparticles. J Magn Magn Mater. 272276: 14011403. Doi:10.1016/j.jmmm.2003.12.139.
Asri, N. S., Nurdila, F. A., Kato, T., Iwata, S., Suharyadi, E. 2018. Removal Sudy of Cu(II), Fe(II) and Ni(II) Ions from Wastewater Using Polymer-coated Cobalt Ferrite (CoFe2 O4 ) Magnetic Nanoparticles Adsorbent. J Phys Conf Ser. 1091: 012016. Doi:10.1088/1742-6596/1091/1/012016.
Dev, V. V., Nair, K. K., Baburaj, G., Krishnan, K. A. 2022. Pushing the Boundaries of Heavy Metal Adsorption: A Commentary on Strategies to Improve Adsorption Efficiency and Modulate Process Mechanisms. Colloid Interface Sci Commun. 49: 100626. Doi: 10.1016/j.colcom.2022.100626.
Ray, S. S., Gusain, R., Kumar, N. 2020. Adsorption in the Context of Water Purification. Carbon Nanomaterial-Based Adsorbents for Water Purification. 67100. Doi: 10.1016/B978-0-12-821959-1.00004-0.
Sims, R. A., Harmer, S. L., Quinton, J. S. 2019. The Role of Physisorption and Chemisorption in the Oscillatory Adsorption of Organosilanes on Aluminium Oxide. Polymers. 11(3): 410. Doi:10.3390/polym11030410.
Weyrich, J. N., Mason, J. R., Bazilevskaya, E. A., Yang, H. 2023. Understanding the Mechanism for Adsorption of Pb(II) Ions by Cu-BTC Metal–Organic Frameworks. Molecules. 28(14): 5443. Doi:10.3390/molecules28145443.
Marzbali, M. H., Esmaieli, M. 2017. Fixed Bed Adsorption of Tetracycline on a Mesoporous Activated Carbon: Experimental Study and Neuro-fuzzy Modeling. J Appl Res Technol JART. 15(5): 454463. Doi:10.1016/j.jart.2017.05.003.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.













