PREDICTIVE ROCK MASS CLASSIFICATION PARAMETER MODELS FROM ROCK MATERIAL ENGINEERING TESTS

Authors

  • Ahmad Faiz Salmanfarsi Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
  • Haryati Awang Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.23153

Keywords:

Rock engineering properties, granite, rock mass classification, rock mass rating, regression analysis

Abstract

Rock mass classification is one of the most widely used method for assessment of rock slope which is developed from empirical case studies. One of the most widely used are the Rock Mass Rating (RMR). Most of the rock mass classifications were developed through discrete rating of parameters, meaning that a high subjectivity from the practitioner is involved in assigned rating of the parameters. Thus, continuous functions were developed in order to reduce the subjectivity when assigning values to the parameters. This study attempts to develop predictive model of selected parameters from several available continuous function in the RMR rock mass classification, using input of laboratory test of engineering properties of weathered granite. Multiple regression analysis indicated several of the physical properties of weathered granite are statistically significant in predicting the parameters of strength of intact rock material and intact rock alterability. These prediction models are validated through graphical plotting of calculated continuous function RMR using measured field and laboratory test value for the parameter against calculated continuous function RMR using prediction model for parameter value. Several of the continuous function RMR show no statistical difference in mean value between the two values of continuous function RMR, indicating that calculation using prediction models for the parameter are closely similar to calculation using actual field and laboratory measurement of the parameter. Regression analysis are carried out for the rest of the continuous function RMR to provide correction factor to use these prediction models as parameters in the continuous function RMR.

 

References

Akter, A., Parvez, A., Rasheduzzaaman, M., Hasan, M. M. & Islam, M. 2022. A Review on Landslide Susceptibility Mapping in Malaysia: Recent Trend and Approaches. Asian Journal of Social Sciences and Legal Studies. 4(5): 199208. Doi: 10.34104/ajssls.022.01990208.

Awang, H., Salmanfarsi, A. F., Zaini, M. S. I., Mohamad Yazid, M. A. F. & Ali, M. I. 2021. Investigation of Groundwater Table Under Rock Slope by Using Electrical Resistivity Imaging at Sri Jaya, Pahang, Malaysia. IOP Conference Series: Earth and Environmental Science. 682: 012017. Doi: 10.1088/1755-1315/682/1/012017.

Zaini, M. S. I., Hasan, M., & Zolkepli, M. F. 2022. Urban Landfills Investigation for Leachate Assessment Using Electrical Resistivity Imaging in Johor, Malaysia. Environmental Challenges. 6: 100415.

Public Work Department. 2009. National Slope Master Plan Sectoral Report Research and Development. Kuala Lumpur: Jabatan Kerja Raya Malaysia.

Davies, T., Rosser, N. & Shroder, J. F. 2021. Landslide Hazards, Risks, and Disasters. Elsevier, Amsterdam. 674.

Doi: 10.1016/C2018-0-02502-5.

Salmanfarsi, A. F., Awang, H. & Ali, M. I. 2020. Rock Mass Classification for Rock Slope Stability Assessment in Malaysia: A Review. IOP Conference Series: Material Science and Engineering. 712: 012035.

Doi: 10.1088/1757-899X/712/1/012035.

Nagendran, S. K., Mohamad Ismail, M. A. & Wen, Y. T. 2019. 2D And 3D Rock Slope Stability Assessment Using Limit Equilibrium Method Incorporating Photogrammetry Technique. Bulletin of the Geological Society of Malaysia, 68: 133–139. Doi: 10.7186/bgsm67201913.

Zerradi, Y., Souissi, M., Soufi, A., Bennouna, R., Bahi, A. & Zaki, I. 2023. Slope Stability Assessment Using Slope Mass Rating (SMR), Key Block Theory, and Kinematic Analysis: A Case Study. Journal of Southwest Jiaotong University. 58(4). Doi: 10.35741/issn.0258-2724.58.4.45.

Tan, B. K. 2017. Engineering Geology in Malaysia – Some Case Studies. Bulletin of the Geological Society of Malaysia. 64: 65–79. Doi: 10.7186/bgsm64201707.

Moses, D., Shimada, H., Sasaoka, T., Hamanaka, A. Dintwe, T. K. & Wahyudi, S. 2020. Rock Slope Stability Analysis by Using Integrated Approach. World Journal of Engineering and Technology. 8: 405428.

Doi: 10.4236/wjet.2020.83031.

Abdul Rahim, A. F., Md Rafek, A. G., Serasa, A. S., Jaapar, A. R., Goh, T. L., Roslee, R., Lee, K. E., Nguyen, X. H. & Tran, V. X. 2023. A Review of Rock Slope Stability Assessment Practice in Malaysia. Sains Malaysiana. 52(2): 399416.

Bieniawski, Z. T. 1993. Classification of Rock Masses for Engineering: The RMR System and Future Trends. In Hudson, J. A. (Ed). Comprehensive Rock Engineering, Vol. 3: Rock Testing and Site Characterization - Principles, Practice & Projects. Pergamon Press, New York. 553573.

Hussin, H. & Arifin, M. H. 2023. Rock Mass Classification for Rock Mass in Tunnelling and Underground Excavation - Development, Limitation and Way Forward. Bulletin of the Geological Society of Malaysia. 75: 1323.

Doi: 10.7186/bgsm75202303.

Bieniawski, Z. T. 1989. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering. John Wiley & Sons, New York. 250.

Singh, B. & Goel, R. K. 2012. Engineering Rock Mass Classification. Butterworth-Heinemann, Oxford. 365.

Doi: 10.1016/C2010-0-64994-7.

Rusydy, I., Ismet Canbulat, I., Zhang, C., Wei, C. & McQuillan, A. 2024. The Development and Implementation of Design Flowchart For Probabilistic Rock Slope Stability Assessments: A Review. Geoenvironmental Disasters. 11(28): 126.

Doi: 10.1186/s40677-024-00290-9.

Pantelidis, L. 2009. Rock Slope Stability Assessment through Rock Mass Classification Systems. International Journal of Rock Mechanics and Mining Sciences. 46(2): 315325.

Doi: 10.1016/j.ijrmms.2008.06.003.

Erharter, G. H., Bar, N., Hansen, T. F., Jain, S. & Marcher. T. 2024. International Distribution and Development of Rock Mass Classification: A Review. Rock Mechanics and Rock Engineering. 2024. Doi: 10.1007/s00603-024-04215-8.

Sardana, S., Verma, A. K., Singh, A. & Laldinpuia. 2019. Comparative Analysis of Rockmass Characterization Techniques for the Stability Prediction of Road Cut Slopes along NH-44A, Mizoram, India. Bulletin of Engineering Geology and the Environment. 78(8): 5977–5989.

Khanna, R. & Dubey, R. K. 2021. Comparative Assessment of Slope Stability along Road-cuts through Rock Slope Classification Systems in Kullu Himalayas, Himachal Pradesh, India. Bulletin of Engineering Geology and the Environment. 80: 993–1017. Doi: 10.1007/s10064-020-02021-4.

Alejano, L. R. 2024. Rock Mass Classification Systems: A Useful Rock Mechanics Tool, Often Misused. Rock Mechanics and Rock Engineering. 2024. Doi: 10.1007/s00603-024-04087-y.

Şen, Z. & Sadagah, B. H. 2003. Modified Rock Mass Classification System by Continuous Rating. Engineering Geology. 67(34): 269280. Doi: 10.1016/S0013-7952(02)00185-0.

Rehman, H., Ali, W., Naji, A. M., Kim, J. & Yoo, H. K. 2018. Empirical Evaluation of Rock Mass Rating and Tunneling Quality Index System for Tunnel Support Design. Applied Sciences. 8: 782. Doi: 10.3390/app8050782.

Kundu, J., Sarkar, K., Singh, A. K. & Singh, T. N. 2020. Continuous Functions and a Computer Application for Rock Mass Rating. International Journal of Rock Mechanics and Mining Sciences. 129: 104280. Doi: 10.1016/j.ijrmms.2020.104280.

Simon, N., Mat Akhir, J., Napiah, A. & Tan, H. K. 2008. Development of Landslide Database along km 160 – km 190, East Coast Highway, Pahang. Warta Geologi. 34(5&6): 233–238.

Tan, H. K., Mat Akhir, J., Napiah, A. & Simon, N. 2008. Pemetaan Ramalan Potensi Tanah Runtuh di Sepanjang km160-190 Lebuhraya Pantai Timur dengan Pendekatan Sistem Maklumat Geografi: Kaedah Statistik. Warta Geologi. 34(5&6): 239–242.

Yu, Y., Xin Qian, X., Mustapha, K. A., Sheldrick, T. C., Gan, C., Zhang, Y. & Wang, Y. 2022. Late Paleozoic–Early Mesozoic Granitic Rocks in Eastern Peninsular Malaysia: New Insights for the Subduction and Evolution of the Paleo-Tethys. Journal of Asian Earth Sciences. 239: 105427.

Doi: 10.1016/j.jseaes.2022.105427.

Nugraheni, R. D., Sunjaya, D. & Agustini, S. 2018. Regional Tectonic and Geochemical Approach to Distinguish Bauxite Characteristics in Pahang, Malaysia and West Kalimantan, Indonesia. IOP Conference Series: Earth and Environmental Science. 212: 012026. Doi: 10.1088/1755-1315/212/1/012026.

Ghani, A. A., Shahjamal, M., Ng, T. F., Ismail, N. E. H., Mohamad Zulkifley, M. T, Islami, N. … Masor, A. F. 2019. Ce Anomaly in I‒Type Granitic Soil from Kuantan, Peninsular Malaysia: Retention of Zircon in the Weathering Product. Sains Malaysiana. 48(2): 309–315. Doi: 10.17576/jsm-2019-4802-06.

Awang, H., Salmanfarsi, A. F., Misbahuddi, A. Z. & Ali, M. I. 2021. Slope Stability Analysis of Rock Mass using Rock Mass Rating and Slope Mass Rating. IOP Conference Series: Earth and Environmental Science. 682: 012015. Doi: 10.1088/1755-1315/682/1/012015

British Standards Institution. 2018. Geotechnical Investigation and Testing. Identification, Description and Classification of Rock. Part 1: Identification and Description. BS EN ISO 14689:2018. London: BSI.

British Standards Institution. 2015. Code of Practice for Site Investigations. BS 5930: 2015+A1:2020. London: BSI.

Ulusay, R & Hudson, J. A. 2007. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006. Ankara: International Society of Rock Mechanics Commission on Testing Methods, 2007.

Ulusay, R. 2015. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014. Switzerland: Springer International Publishing.

Celada, B., Tardáguila, I., Varona, P., Rodríguez, A. & Bieniawski, Z.T. 2014. Innovating Tunnel Design by an Improved Experience-based RMR System. A. Negro, M. O. Cecilio Jr. & W. Bilfinger (Eds.). Proceedings of the World Tunnel Congress (pp. 1–9).

Mohamad, E. T., Latifi, N., Arefnia, A. & Isa, M. F. 2016. Effects of Moisture Content on the Strength of Tropically Weathered Granite from Malaysia. Bulletin of Engineering Geology and the Environment. 75: 369–390. Doi: 10.1007/s10064-015-0749-2.

Wengang, Z., Liang, H., Zixu, Z. & Yanmei, Z. 2021. Digitalization of Mechanical and Physical Properties of Singapore Bukit Timah Granite Rocks based on Borehole Data from Four Sites. Underground Space. 6(5): 483–491. Doi: 10.1016/j.undsp.2020.02.003.

Raj, J. K. 2023. Physical Characterization of the Weathering Profile over a Sheared, Biotite-muscovite Granite in Peninsular Malaysia. Bulletin of the Geological Society of Malaysia. 75, 25-36. Doi: 10.7186/bgsm75202304.

Suparmanto, E. K., Mohamad, E. T., Rathinasamy, V., Ahmad Legiman, M. K., Zainal, Z., Zainuddin, N. E. … Armaghani, D. J. 2024. A Series of Regression Models to Predict the Weathering Index of Tropical Granite Rock Mass. Environmental Earth Sciences. 83(518): 2024.

Doi: 10.1007/s12665-024-11742-8.

Downloads

Published

2025-08-22

Issue

Section

Science and Engineering

How to Cite

PREDICTIVE ROCK MASS CLASSIFICATION PARAMETER MODELS FROM ROCK MATERIAL ENGINEERING TESTS. (2025). Jurnal Teknologi (Sciences & Engineering), 87(5), 1037-1052. https://doi.org/10.11113/jurnalteknologi.v87.23153