NUTRITIONAL POTENTIAL OF DRIED SEAWEED Turbinaria decurrens: BIOCHEMICAL INSIGHTS AND HEALTH BANEFITS

Authors

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.23168

Keywords:

Ambon Bay waters, Brown seaweed, Turbinaria decurrens

Abstract

Turbinaria decurrens, the tropical brown seaweed, was analyzed for its biochemical composition, which includes proximate, fatty acid, amino acid, and mineral contents. This research aims to investigate the feasibility of utilizing brown seaweed as an alternative source of human nutrition derived from the ocean. Proximate (moisture, fat, ash, protein, and carbohydrate) and minerals (calcium, sodium, potassium, magnesium, and iron) were determined by the standard method of AOAC. In contrast, phosphor was determined by the spectrophotometric method. Amino acid was determined by  Ultra Performance Liquid Chromatography and fatty acid by gas chromatography. The results indicated that the significant proximate content was carbohydrates, ash, moisture, protein, and fat, which were 61.44%, 16.73%, 15.78%, 4.34%, and 1.71%, respectively. The primary mineral content was calcium, potassium, magnesium, sodium, phosphor, and iron, which were 42,991 mg/kg, 19,222 mg/kg, 10,402 mg/kg, 8,180 mg/kg, 237 mg/kg, and 166.9 mg/kg, respectively. The significant component of saturated fatty acids was palmitic acid, myristic acid, lauric acid, and stearic acid, which were 0.61%, 0.08%, 0.08%, and 0.06%, respectively. The two significant monounsaturated fatty acid components were oleic acid and palmitoleic acid, which were 0.39% and 0.04%, respectively. In comparison, polyunsaturated fatty acids were arachidonic acid, linoleic acid, linolenic acid, eicosatrienoic acid, and eicosapentaenoic acid, which were 0.19%, 0.1%, 0.07%, 0.02%, and 0.02%, respectively. 

Author Biographies

  • Abdullah Rasyid, Research Center for Vaccine and Drug, BRIN, Jl. Raya Jakarta-Bogor Km.46 Cibinong 16911, Indonesia

    -

  • Fauzy Rachman, Research Center for Vaccine and Drug, BRIN, Jl. Raya Jakarta-Bogor Km.46 Cibinong 16911, Indonesia

    -

  • Tri Handayani, Research Center for Oceanography, BRIN, Jl. Pasir Putih No.1 Ancol Timur, Jakarta 14430, Indonesia

    -

  • Nurjamin -, Research Center for Oceanography, BRIN, Jl. Pasir Putih No.1 Ancol Timur, Jakarta 14430, Indonesia

    -

  • Raismin Kotta, Research Center for Marine and Land Bioindustry, BRIN, Desa Teluk Kodek, Lombok Timur 83352, Indonesia

    -

References

Kluru, P., D’Auria, M. V., Muller, C. D., Tammela, P., Vuorela, H. & Yli-Kauhaluoma, J. 2014. Exploring Marine Resources for Bioactive Compounds. Planta Medica. 80: 12341246. Doi: https://doi.org/10.1055/s-0034-1383001.

Patarra, R. F., Paiva, L., Neto, A. I., Lima, E. Baptista, J. 2011. Nutritional Value of Selected Macroalgae. Journal of Applied Phycology. 23(2): 205208.

Doi: https://doi.org/10.1007/s10811-010-9556-0.

Alisha, Dubey, R. P. & Haider, A. 2019. Seaweed: Nutritional and Health Benefits. The Pharma Innovation Journal. 8(8): 8083.

Ahmad, F., Sulaiman, M. R., Saimon, W., Yee, F. C. & Matanjun, P. 2012. Proximate Composition and Total Phenolic Contents of Selected Edible Seaweed from Semporna, Sabah, Malaysia. Borneo Science. 31: 7483.

Chakraborty, S. & Bhattacharya, T. 2012. Nutrient Composition of Marine Benthic Algae Found in the Gulf of Kutch Coastline, Gujarat, India. Journal of Algal Biomass Utilization. 3: 3238.

AOAC. 1990. Official Methods of Analysis of the Association of Official Analytical Chemists 15th ed., Washington D.C. 771.

Waters, 2012. Acquity UPLC H-Class and H-Class Bio Amino Acid Analysis System Guide. Waters Cooperation, USA., 170.

Berna, K., Semra, C., Gamze, T., Halice, T. & Edis, K. 2013. Seaweeds for Food and Industrial Applications. In book: Food Industry 1st Edition Chapter 31 (Editor: Innocenzo Muzzalupo). Intech: 735748.

Doi: http://dx.doi.org/10.5772/53172.

Remya, R. R., Rajasree, S. R. R., Suman, T. Y., Aranganathan, L., Gayathri, S., Gobalakrishnan, M. & Karthi, M. G. 2019. Studies on Proximate Composition and Phytochemical Profiling of Turbinaria ornate and Its Antiproliferative Effect on Y79 Cell Lines. Thalassas: An International Journal of Marine Sciences. 8.

Doi: https://doi.org/10.1007/s41208-019-00159-x.

Olsson, J., Toth, G. B. & Albers, E. 2020. Biochemical Composition of red, green and brown seaweeds on the Swedish west coast. Journal of Applied Phycology 32(5): 33053317.

Doi: https://doi.org/10.1007/s10811-020-02145-w.

D’Armas, H., Jaramillo, C., D’Armas, M., Echavaria, A. & Valverde P. 2019. Proximate Composition of Several Macroalgae from the Coast of Salinas Bay, Ecuador. Revista de Biologia Tropical6. (7): 61–68.

Doi: http://dx.doi.org/10.15517/rbt..33380.

Chowdhury, K. N., Ahmed, M. K., Akhter, K. T., Alam, M. J., Rani, S. & Khan, M. I. 2022. Proximate Composition of Some Selected Seaweeds from Coastal Areas of Cox’s Bazar and St. Martin’s Island, Bangladesh. The Dhaka University Journal Earth Environment Sciences. 10(3): 113122.

Doi: https://doi.org/10.3329/dujees.v10i3.59077.

Rohani-Ghadikolaei ,K., Abdulalian, E. & Ng, W. K. 2012. Evaluation of the Proximate, Fatty Acid, and Mineral Composition of Representative Green, Brown, and Red Seaweeds from the Persian Gulf of Iran as Potential Food and Feed Resources. Journal of Food Science and Technology. 49(6): 774780.

Doi: https://doi.org/10.1007/s13197-010-0220-0.

Tibbetts, S. M., Milley, J. E. & Lall, S. P. 2016. Nutritional Quality of Some Wild and Cultivated Seaweeds: Nutrient Composition, Total Phenolic Content and in Vitro Digestibility. Journal of Applied Phycology. 28: 35753585.

Doi: https://doi.org/10.1007/s10811-016-0863-y.

Siahaan, E. A., Asaduzzaman, A. K. M. & Pangestuti, R. 2018. Chemical Composition of Two Brown Seaweed Species from Karimun Jawa, Indonesia. Marine Research in Indonesia. 48(2): 7178.

Doi: https://doi.org/10.14203/mri.v43i2.480.

Fouda, W. A., Ibrahim, W. M., Ellamie, A. M. & Ramadan, G. 2019. Biochemical and Mineral Composition of Six Brown Seaweeds Collected from the Red Sea at Hurghada Coast. Indian Journal of Geo-Marine Sciences. 48(04): 484491.

Holdt, S. L. and Kraan, S. 2011. Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. Journal of Applied Phycology. 23(3): 543597.

Doi: https://doi.org/10.1007/s10811-010-9632-5.

Ruperez, P. and Saura-Calixto, F. 2001. Dietary Fibre and Physicochemical Properties of Edible Spanish Seaweeds. European Food Research and Technology. 212(3): 349354.

Doi: https://doi.org/10.1007/s002170000264.

Venkatesan, J., Anil, S. & Kim, S. 2017. Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications. Amsterdam, Germany; Elsevier.

El-Shenody, R. A., Ashour, M. & Ghobara, M. M. E. 2019. Evaluating the Chemical Composition and Antioxidant Activity of Three Egyptian Seaweeds: Dictyota dichotoma, Turbinaria decurrens and Laurencia obtusa. Brazilian Journal of Food Technology. 22: e2018203.

Doi: https://doi.org/10.1590/1981-6723.20.

Kokilam, G., Vasuki, S. & Sajitha N. 2013. Biochemical Composition, Alginic Acid Yield and Antioxidant of Brown Seaweeds from Mandapam Region Gulf of Mannar. Journal of Applied Pharmaceutical Science. 3(11): 99104.

Doi: https://doi.org/10.7324/JAPS.2013.31118.

Mandalka, A., Cavalcanti, M. I. L. G., Harb, T. B., Fujii, M. T., Eisner, P., Weisz, U. S. & Chow, F. 2022. Nutritional Composition of Beach-cast Marine Algae from the Brazilian Coast: Added Value for Algal Biomass Considered as Waste. Foods. 11: 1201.

Doi: https://doi.org/10.3390/foods11091201.

Nithya, P., Archana, L., Kokila, P., Saranya, K., Viji, M., Murugan, P. Maruthupandian, A. 2022. Nutritional Assessment on Brown Macroalgae Lobophora variegate from GOMBR, Tamil Nadu, India. Journal of Advanced Applied Scientific Research. 4(2): 18.

Doi: https://doi.org/10.46937/joaasr422022157.

Milinovic, J., Fernando, A. L., Campos, B., Leite, B., Mata, P., Diniz, M., Sardinha, J. & Noronha, J. P. 2021. Nutritional Benefits of Edible Macroalgae from the Central Portuguese Coast: Inclusion of Low-calorie ‘Sea Vegetables’ in the Human Diet. International Journal of Environmental Sciences & Natural Resources. 28(5): 10p.

Doi: https://doi.org/10.19080/IJESNR.2021.28.556250.

Ismail, M. & Osman, M. 2017. Seasonal Fluctuation of Photosynthetic Pigments of Most Common Red Seaweeds Species Collected from Abu Qir, Alexandria, Egypt. Revista de Biologia Marina Y Oceanografia. 51(3): 515525.

Doi: https://doi.org/10.4067/S0718-19572016000300004.

Belattmania, Z., Engelen, A. H., Pereira, H., Serrao, E., Custodio, L., Varela, J. C., Zrid, R., Reani, A. & Sabour, B. 2018. Fatty Acid Composition and Nutraceutical Perspective of Brown Seaweeds from the Atlantic Coast of Morocco. International Food Research Journal. 25(4): 15201527.

Hawas, U. W., Hussein, S., El-Kassem, L. T. A., Tale, H. A. A. & El-Sherbiny, M. M. 2023. Biochemical Assessment of Some Red Sea Brown Algae with Potential of Antioxidant and Antimicrobial Agents. Thalassas: An International Journal of Marine Sciences. 40(2): 113.

Doi: https://10.1007/s41208-024-00684-4.

Al-Adilah, H., Al-Sharrah, T. K., Al-Bader, D., Ebel, R., Kupper, F. C. & Kumari, P. 2021. Assessment of Arabian Gulf Seaweeds from Kuwait as Sources of Nutritionally Important Polyunsaturated Fatty Acids (PUFAs). Foods. 10: 2442. Doi: https://doi.org/10.3390/foods10102442.

Vilcanqui, Y., Mamani-Apaza, L. O., Flores, M., Ortiz-Viedma, J., Romero, N., Mariotti-Cells, M. S, and Huaman-Castilla, N. L. 2021. Chemical Characterization of Brown and Red Seaweed from Southern Peru, a Sustainable Source of Bioactive and Nutraceutical Compounds. Agronomy. 11(8): 1669.

Doi: https://doi.org/10.3390/agronomy11081669.

Abou-El-Wafa, G. S. E., Shaaban, K. A., El-Naggar, M. E. E. & Shaaban M. 2021. Bioactive Constituent and Biochemical Composition of the Egyptian Brown Alga Sargassum subrepandum (Forsk). Revista Latinoamericana de Quimica. 39(12): 6274.

Saroja, P. M. 2016. Nutritional Evaluation of Three Marine Macroalgae on the Coast of Kanyakumari District. International Journal of Pure & Applied Bioscience. 4(1): 193198.

Doi: http://dx.doi.org/10.18782/2320-7051.2198.

Downloads

Published

2025-06-13

Issue

Section

Science and Engineering

How to Cite

NUTRITIONAL POTENTIAL OF DRIED SEAWEED Turbinaria decurrens: BIOCHEMICAL INSIGHTS AND HEALTH BANEFITS. (2025). Jurnal Teknologi (Sciences & Engineering), 87(4), 785-792. https://doi.org/10.11113/jurnalteknologi.v87.23168