Emulsion Liquid Membrane for Cadmium Removal: Experimental Results and Model Prediction
DOI:
https://doi.org/10.11113/jt.v65.2321Keywords:
Model prediction, cadmium, emulsion liquid membraneAbstract
A study on mass transfer model for cadmium extraction in emulsion liquid membrane system has been done. Mass transfer in the external phase and emulsion globule, stripping reaction, and diffusion of the complex were taken account into the model. Reaction and chemical equilibrium of the process were also considered. The partial differential equation was numerically solved using MATLAB software. Effect of some parameters such as acid concentration in the external phase, extraction speed, volume ratio of emulsion to feed phase, volume ratio of internal to membrane phase, and initial concentration to the extraction process were investigated and compared to the model. The model prediction can agree very well with the concentration profile of cadmium in each phase.
References
L. Friberg, C.G. Elinder, T. Kjellstrom. 1992. Cadmium. Available from: http://www.inchem.org/documents/ehc/ehc/ehc134.htm.
Y. Xu, L. Yang, J. Yang. 2010. International Journal of Engineering, Science and Technology. 2(7).
M. D. C. V. Soares, M. D. A. Bertrand, F. D. A. Lemos, et al. 2005. Removal of Lead, Cadmium and Zinc from Industrial Effluents Using Nanofiltration and Reverse Osmosis Membranes. In XIII International Conference on Heavy Metals in the Environment. R.d.B.E. Trindande, et al. Editors: Rio de Janeiro, Brazil. 1–4.
C. K. Ahn, Y. M. Kim, S. H. Woo, et al. 2009. Hydrometallurgy. 99(3–4).
A. L. Ahmad, A. Kusumastuti, C. J. C. Derek, et al. 2011. Chemical Engineering Journal. 171(3).
M. Chakraborty, C. Bhattacharya, S. Datta. 2010. Chapter 4 - Emulsion Liquid Membranes: Definitions and Classification, Theories, Module Design, Applications, New Directions and Perspectives. In Liquid Membranes. S.K. Vladimir, Editor. 2010, Elsevier: Amsterdam. 141–199.
C. Basualto, M. Poblete, J. Marchese, et al. 2006. Journal of the Brazilian Chemical Society. 17.
R. A. Kumbasar. 2008. Separation and Purification Technology. 63(3).
R. A. Kumbasar. 2009. Hydrometallurgy. 95(3–4).
H. R. Mortaheb, H. Kosuge, B. Mokhtarani, et al. 2009. Journal of Hazardous Materials. 165(1–3).
C. C. Chan, C. J. Lee. 1984. Journal of Membrane Science. 20(1).
M. Teramoto, T. Sakai, K. Yanagawa, et al. 1983. Separation Science and Technology. 18(8).
D. Lorbach, R. Marr. 1987. Chemical Engineering and Processing: Process Intensification. 21(2).
T. Kataoka, T. Nishiki, S. Kimura, et al. 1989. Journal of Membrane Science. 46(1).
N. Yan. 1993. Chemical Engineering Science. 48(22).
S. Weiss, V. Grigoriev, P. Muhl. 1982. Journal of Membrane Science. 12(1).
S. Banerjea, S. Datta, S. K. Sanyal. 2000. Separation Science and Technology. 35.
M. Chakraborty, C. Bhattacharya, S. Datta. 2003. Separation Science and Technology. 38(9).
C. R. Wilke, P. Chang. 1955. A.1.Ch.E. Journal.
C. J. Lee, C. C. Chan. 1990. Industrial & Engineering Chemistry Research. 29(1).
D. R. Olander. 1963. Chemical Engineering Science. 18.
M. T. A. Reis, J. M. R. Carvalho. 2004. Journal of Membrane Science. 237(1–2).
A. L. Ahmad, A. Kusumastuti, C. J. C. Derek, et al. 2012. Desalination. 287(0).
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.