IONIC CONDUCTIVITY, STRUCTURAL ANALYSIS AND BIODEGRADABLE PROPERTIES OF 2- HYDROXYETHYL CELLULOSE DOPED AMMONIUM CHLORIDE WITH PLASTICIZED ETHYLENE CARBONATE SOLID BIOPOLYMER ELECTROLYTE

Authors

  • Aqidah Mohd Noor Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Muhammad Nazmi Hakim Mahmud Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nur Hidayah Ahmad Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nurhafizah Hasim Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.23210

Keywords:

Solid biopolymer electrolytes, Ionic conductivity, X-ray diffraction, Fourier transform infrared spectroscopy, Biodegradable

Abstract

Solid biopolymer electrolytes (SBEs) systems based on 2-hydroxyethyl cellulose (2-HEC), doped with ammonium chloride (AC) and various amounts (2-6 wt%) of ethylene carbonate (EC) as a plasticizer, were prepared using the solution casting technique. The ionic conductivity of the SBEs was analyzed using electrical impedance spectroscopy (EIS), with the sample containing 2 wt% of EC showing the highest conductivity at 3.43 × 10−4 S/cm. The physical appearance and structural properties of the SBEs were also tested. Fourier transform infrared spectroscopy (FTIR) demonstrated a vibrational spectrum of composite SBEs, confirmed through comparison with Gaussian analysis, with a peak value at 2928 cm⁻¹ indicating the C-H stretching of 2-HEC. Additionally, X-ray diffraction (XRD) revealed a broadened amorphous peak for 2-HEC and a distinct peak indicating AC crystallinity. The biodegradable properties of the SBEs were assessed through soil burial. From this, decomposition of material can be observed in natural soil to prevent long-term pollution. The hydroxyl groups in the HEC molecule facilitates enzymatic breakdown from cellulase.

References

Borah, R., Hughson, F. R., Johnston, J. and Nann, T. 2020. On Battery Materials and Methods. Materials Today Advances. 6.

Doi: https://doi.org/10.1016/j.mtadv.2019.100046.

Andrews, J., Rezaei Niya, S. M. and Ojha, R. 2022. Electrochemical Hydrogen Storage in Porous Carbons with Acidic Electrolytes: Uncovering the Potential. Current Opinion in Electrochemistry. 31: 100850.

Doi: https://doi.org/10.1016/j.coelec.2021.100850.

Ye, T., Li, L. and Zhang, Y. 2020. Recent Progress in Solid Electrolytes for Energy Storage Devices. Advanced Functional Materials. 30(29): 1–20.

Doi: https://doi.org/10.1002/adfm.202000077.

Rayung, M., Aung, M. M., Azhar, S. C., Abdullah, L. C., Su’ait, M. S., Ahmad, A. and Jamil, S. N. A. M. 2020. Bio-based Polymer Electrolytes for Electrochemical Devices: Insight into the Ionic Conductivity Performance. Materials. MDPI AG.

Doi: https://doi.org/10.3390/ma13040838.

Noor, N. A. M. and Isa, M. I. N. 2019. Investigation on Transport and Thermal Studies of Solid Polymer Electrolyte Based on Carboxymethyl Cellulose Doped Ammonium Thiocyanate for Potential Application in Electrochemical Devices. International Journal of Hydrogen Energy. 44(16): 8298–8306.

Doi: https://doi.org/10.1016/j.ijhydene.2019.02.062.

Ghazali, N. M. and Samsudin, A. S. 2020a. Progress on Biopolymer as an Application in Electrolytes System: A Review Study. Materials Today: Proceedings. 49: 3668–3678.

Doi: https://doi.org/10.1016/j.matpr.2021.09.473.

Aja Aravamudhan, Daisy M. Ramos, Ahmed A. Nada, Sangamesh G. Kumbar. 2014. Chapter 4 - Natural Polymers: Polysaccharides and Their Derivatives for Biomedical Applications. Editor(s): Sangamesh G. Kumbar, Cato T. Laurencin, Meng Deng. Natural and Synthetic Biomedical Polymers. Elsevier.

Doi: http://dx.doi.org/10.1016/B978-0-12-396983-5.00004-1.

Badry, R., Ezzat, H. A., El-Khodary, S., Morsy, M., Elhaes, H., Nada, N. and Ibrahim, M. (2021a). Spectroscopic and Thermal Analyses for the Effect of Acetic Acid on the Plasticized Sodium Carboxymethyl Cellulose. Journal of Molecular Structure. 1224.

Doi: https://doi.org/10.1016/j.molstruc.2020.129013.

Ramlli, M. A., Bashirah, N. A. A. and Isa, M. I. N. 2018. Ionic Conductivity and Structural Analysis of 2-hyroxyethyl Cellulose Doped with Glycolic Acid Solid Biopolymer Electrolytes for Solid Proton Battery. IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing.

Doi: https://doi.org/10.1088/1757-899X/440/1/012038.

Hafiza, M. N. and Isa, M. I. N. 2017. Solid Polymer Electrolyte Production from 2-hydroxyethyl Cellulose: Effect of Ammonium Nitrate Composition on Its Structural Properties. Carbohydrate Polymers. 165: 123–131.

Doi: https://doi.org/10.1016/j.carbpol.2017.02.033.

Taghizadeh, M. T. and Seifi-Aghjekohal, P. 2015. Sonocatalytic Degradation of 2-hydroxyethyl Cellulose in the Presence of Some Nanoparticles. Ultrasonics Sonochemistry. 26: 265–272.

Doi: https://doi.org/10.1016/j.ultsonch.2014.12.014.

Orhan, B., Ziba, C. A., Morcali, M. H. and Dolaz, M. 2018. Synthesis of Hydroxyethyl Cellulose from Industrial Waste using Microwave Irradiation. Sustainable Environment Research. 28(6): 403–411.

Doi: https://doi.org/10.1016/j.serj.2018.07.004.

Salleh, N. S., Aziz, S. B., Aspanut, Z. and Kadir, M. F. Z. 2016. Electrical Impedance and Conduction Mechanism Analysis of Biopolymer Electrolytes based on Methyl Cellulose Doped with Ammonium Iodide. Ionics. 22(11): 2157–2167.

Doi: http://dx.doi.org/10.1007/s11581-016-1731-0.

Sohaimy, M. I. H. A. and Isa, M. I. N. M. 2020a. Natural Inspired Carboxymethyl Cellulose (Cmc) Doped with Ammonium Carbonate (ac) as Biopolymer Electrolyte. Polymers. 12(11): 1–14.

Doi: https://doi.org/10.3390/polym12112487.

Shcherbakov, V. V., Artemkina, Y. M., Akimova, I. A. and Artemkina, I. M. 2021. Dielectric Characteristics, Electrical Conductivity and Solvation of Ions in Electrolyte Solutions. Materials. 14(19).

Doi: https://doi.org/10.3390/ ma14195617.

Sohaimy, M. I. H. and Isa, M. I. N. 2022. Proton-Conducting Biopolymer Electrolytes Based on Carboxymethyl Cellulose Doped with Ammonium Formate. Polymers. 14(15).

Doi: https://doi.org/10.3390/ polym14153019.

Hafiza, M. N. and Isa, M. I. N. 2020. Correlation between Structural, Ion Transport and Ionic Conductivity of Plasticized 2-hydroxyethyl Cellulose based Solid Biopolymer Electrolyte. Journal of Membrane Science. 597.

Doi: https://doi.org/10.1016/j.memsci.2019.117176.

Jilal, I., El Barkany, S., Bahari, Z., Sundman, O., El Idrissi, A., Abou-Salama, M., Romane, A., Zannagui, C. and Amhamdi, H. 2018. New Quaternized Cellulose based on Hydroxyethyl Cellulose (HEC) Grafted EDTA: Synthesis, Characterization and Application for Pb (II) and Cu (II) Removal. Carbohydrate Polymers. 180(May 2017): 156–167.

Doi: http://dx.doi.org/10.1016/j.carbpol.2017.10.012.

Bhuvaneswari, R., Begam, M. R., Karthikeyan, S. and Selvasekarapandian, S. 2019. Development and Characterization of Proton Conducting Polymer Electrolyte based on PVA: Arginine: NH4SCN. AIP Conference Proceedings, 2115: 15–22.

Doi: http://dx.doi.org/10.1016/j.ssi.2016.10.016.

Nakagame, S., Chandra, R. P. and Saddler, J. N. 2011. The Influence of Lignin on the Enzymatic Hydrolysis of Pretreated Biomass Substrates. ACS Symposium Series. 1067: 145–167.

Doi: https://doi.org/10.1021/bk-2011-1067.ch006.

Jun-Feng Su, Zhen Huang, Xiao-Yan Yuan, Xin-Yu Wang, Min Li. 2010. Structure and Properties of Carboxymethyl Cellulose/soy Protein Isolate Blend Edible Films Crosslinked by Maillard Reactions. Carbohydrate Polymers. 79: 145153.

https://doi.org/10.1016/j.carbpol.2009.07.035.

Downloads

Published

2025-08-22

Issue

Section

Science and Engineering

How to Cite

IONIC CONDUCTIVITY, STRUCTURAL ANALYSIS AND BIODEGRADABLE PROPERTIES OF 2- HYDROXYETHYL CELLULOSE DOPED AMMONIUM CHLORIDE WITH PLASTICIZED ETHYLENE CARBONATE SOLID BIOPOLYMER ELECTROLYTE. (2025). Jurnal Teknologi (Sciences & Engineering), 87(5), 959-965. https://doi.org/10.11113/jurnalteknologi.v87.23210