REVEALING THE UNSEEN: A BRIEF REVIEW OF INVASIVE AND NON-INVASIVE PROCESS TOMOGRAPHY IN INDUSTRY

Authors

  • Ain Eazriena Che Man Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia
  • Yasmin Abdul Wahab Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia https://orcid.org/0000-0003-2652-8623
  • Nurhafizah Abu Talip Yusof ᵃFaculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia ᵇCentre for Research in Advanced Fluid & Processes (Fluid Centre), Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia https://orcid.org/0000-0001-9762-5119
  • Suzanna Ridzuan Aw Faculty of Engineering Technology (Electrical & Automation) University College TATI, 24000, Jalan Panchor, Telok Kalong, 24000 Kemaman, Terengganu, Malaysia https://orcid.org/0000-0002-9438-6201
  • Mohd Mawardi Saari Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia https://orcid.org/0000-0002-3049-5548
  • Ruzairi Abdul Rahim Process Tomography Research Group (Protom-i), School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0003-3567-6185
  • Sia Yee Yu LOGO Solution Sdn. Bhd., suite 0525, Level 5, Wisma SP Setia, Jalan Indah 15, Bukit Indah, 79100 Iskandar Puteri Johor Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.23257

Keywords:

Process tomography; dielectric medium; multiphase regimes; ECT; conducting pipe

Abstract

In the field of multiphase flow characterisation, process tomography techniques have attracted a lot of attention because they provide important insights into the internal dynamics of complicated systems. In particular, non-invasive and invasive techniques are compared and several forms of process tomography utilized for multiphase regime identification are reviewed in this work, with an emphasis on industrial applications. Non-invasive process tomography methods evaluate electrical qualities or fluctuations in conductivity using external sensors or electrodes, allowing for real-time imaging and monitoring without physically altering the system. In contrast, more precise and localized measurements are made possible by invasive process tomography techniques, which entail the direct insertion of sensors or probes into the system. The comparative benefits and drawbacks of invasive and non-invasive process tomography methods for multiphase regime identification are also included in this review. It examines variables like measurement precision, spatial resolution, intrusiveness of the system, and installation needs. When choosing process tomography methods for finding multiphase regimes in industrial applications, researchers can make well-informed selections with the help of this review, which provides insights into the advantages and disadvantages of each methodology.

References

J. Yao, M. Takei. 2017. Application of Process Tomography to Multiphase Flow Measurement in Industrial and Biomedical Fields: A Review. IEEE Sensors Journal. 17: 8196–8205. https://doi.org/10.1109/JSEN.2017.2682929.

N. A. Zulkiflli, S. Ibrahim, M. H. F. Rahiman, J. Pusppanathan, R. A. Rahim, K. S. Tee, F. A. Phang, N. D. Nawi, N. M. N. Ayob. 2019. Ultrasound Tomography Hardware System for Multiphase Flow Imaging. Proceedings of the 2019 IEEE International Conference on Signal and Image Processing Applications, ICSIPA 2019. 264–268. https://doi.org/10.1109/ICSIPA45851.2019.8977725.

N. F. Mukaiyin, E. J. Mohamad, R. Abdul Rahim, J. Pusppanathan, N. N. Nasir, Z. Zakaria, I. M. Zainal Abidin, O. Mohd Faizan Mawrah, N. A. Zulkifli. 2019. Investigation of Capabilities of Electromagnetic Tomography for Pipeline Imaging. Jurnal Teknologi. 81: 149–154. https://doi.org/10.11113/jt.v81.13197.

G. Steiner, F. Podd. 2006:. A Non-invasive and Non-intrusive Ultrasonic Transducer Array for Process Tomography. Proceedings of the XVIIII IMEKO World Congress Metrology for a Sustainable Development, Brazil. 17–22.

A. Bouzid, S. Chidami, T.Q. Lailler, A.C. García, T. Ould-bachir, J. Chaouki. 2024. Innovative Non-invasive and Non-intrusive Precision Thermometry in Stainless-steel Tanks using Ultrasound Transducers. Sensors. 24: 3404. https://doi.org/10.3390/s24113404.

T. Rymarczyk. 2018. A Nondestructive Distributed Sensor System for Imaging in Industrial Tomography. Pengzhong Li (Ed.). New Trends in Industrial Automation. IntechOpen. https://doi.org/10.5772/intechopen.79567.

H. Wu, B. Buschle, Y. Yang, C. Tan, F. Dong, J. Jia, M. Lucquiaud. 2018. Liquid Distribution and Hold-up Measurement in Counter Current Flow Packed Column by Electrical Capacitance Tomography, Chemical Engineering Journal. 353: 519–532. https://doi.org/10.1016/j.cej.2018.07.016.

W. Zhang, C. Tan, F. Dong. 2020. Dual-Modality Tomography by ERT and UTT Projection Sorting Algorithm. IEEE Sensors Journal. 20: 5415–5423. https://doi.org/10.1109/JSEN.2020.2969529.

Y. Abdul Wahab, R. Abdul Rahim, M. H. Fazalul Rahiman, S. Ridzuan Aw, F. R. Mohd Yunus, C. L. Goh, H. Abdul Rahim, L. P. Ling. 2015. Non-invasive Process Tomography in Chemical Mixtures – A Review. Sensors and Actuators B: Chemical. 210: 602–617. https://doi.org/10.1016/j.snb.2014.12.103.

Y. Wang, Y. Yang. 2017. Refined Composite Multivariate Multiscale Fuzzy Entropy Analysis of Horizontal Oil-water Two-phase Flow. ICCSE 2017 - 12th International Conference on Computer Science and Education. 423–428. https://doi.org/10.1109/ICCSE.2017.8085529.

C. Li, H. Wang, M. Wang, S. Ma, T. Gao, F. Wang, S. Chen. 2020. Optimization of Geometrical Parameters of ECT Sensor for Power Cable Insulation Detection. 7th IEEE International Conference on High Voltage Engineering and Application, ICHVE 2020 - Proceedings. 2–5. https://doi.org/10.1109/ICHVE49031.2020.9279522.

U. Hampel, L. Babout, R. Banasiak, E. Schleicher, M. Soleimani, T. Wondrak, M. Vauhkonen, T. Lähivaara, C. Tan, B. Hoyle, A. Penn. 2022. A Review on Fast Tomographic Techniques and Their Potential Application in Industrial Process Control. Sensors. 22. https://doi.org/10.3390/s22062309.

Y. Abdul Wahab. 2017. 2 MHz Electrical Resistance Tomography for Static Liquid-Solid Profile Measurement. Universiti Teknologi Malaysia.

G. Tong, S. Liu, S. Liu. 2019. Computationally Efficient Image Reconstruction Algorithm for Electrical Capacitance Tomography. Transactions of the Institute of Measurement and Control. 41: 631–646. https://doi.org/10.1177/0142331218763013.

R. Yan, H. Viumdal, S. Mylvaganam. 2020. Process Tomography for Model Free Adaptive Control (MFAC) Via Flow Regime Identification in Multiphase Flows. IFAC-PapersOnLine. 53: 11753–11760. https://doi.org/10.1016/j.ifacol.2020.12.681.

J. Wang, X. Wang, D. Yang, K. Wang, Y. Zhou. 2018. Magnetic Induction Tomograp Soft. IOP Conference Series: Materials Science and Engineering. 042001. https://doi.org/10.1088/1757-899X/394/4/042001.

M. Soleimani, W. R. B. Lionheart, A. J. Peyton. 2007. Image Reconstruction for High-contrast Conductivity Imaging in Mutual Induction Tomography for Industrial Applications. IEEE Transactions on Instrumentation and Measurement. 56: 2024–2032. https://doi.org/10.1109/TIM.2007.895598.

M. Soleimani, F. Li, S. Spagnul, J. Palacios, J. I. Barbero, T. Gutiérrez, A. Viotto. 2020. In Situ Steel Solidification Imaging in Continuous Casting using Magnetic Induction Tomography. Measurement Science and Technology. 31: 065401. https://doi.org/10.1088/1361-6501/ab6f30.

I. Muttakin, T. Wondrak, M. Soleimani. 2020. Magnetic Induction Tomography Sensors for Quantitative Visualization of Liquid Metal Flow Shape. IEEE Sensors Letters. 4: 5–8. https://doi.org/10.1109/LSENS.2020.3000292.

I. Muttakin, M. Soleimani. 2021. Interior Void Classification in Liquid Metal using Multi-frequency Magnetic Induction Tomography with a Machine Learning Approach. IEEE Sensors Journal. 21: 23289–23296. https://doi.org/10.1109/JSEN.2021.3109629.

C. Tan, Y. Chen, Y. Wu, Z. Xiao, F. Dong. 2021. A Modular Magnetic Induction Tomography System for Low-conductivity Medium Imaging. IEEE Transactions on Instrumentation and Measurement. 70. https://doi.org/10.1109/TIM.2021.3073439.

M. S. Badri Mansor, Z. Zakaria, R. Abdul Rahim, M. F. Abdul Sahib, Y. Md Yunos, S. Sahlan, S. Bunyamin, K. H. Abas, M. H. Izran Ishak, K. Danapalasingam. 2015. Magnetic Induction Tomography: A Brief Review. Jurnal Teknologi. 73: 91–95.

O. Qorbani, E. N. Aghdam. 2020. Two-phase Flow Measuring with Ultrasonic Tomography. Archives of Acoustics. 45: 459–465. https://doi.org/10.24425/aoa.2020.134062.

C. L. Goh, A. R. Ruzairi, F. R. Hafiz, Z. C. Tee. 2017. Investigation into Slow Scan Front-end Control of a Transmission Mode Ultrasonic System. IEEE Sensors Journal. 17: 5136–5142. https://doi.org/10.1109/JSEN.2017.2717506.

C. L. Goh, R. A. Rahim, H. F. Rahiman, T. Zhen Cong, Y. A. Wahad. 2017. Simulation and Experimental Study of the Sensor Emitting Frequency for Ultrasonic Tomography System in a Conducting Pipe. Flow Measurement and Instrumentation. 54: 158–171. https://doi.org/10.1016/j.flowmeasinst.2017.01.003.

V. N. P. L. M. J., S. U., G. L. F. G., P. D., C. F., G. M., E. J. M. Giling. 2018. Development of a Non-intrusive In-line Tomographic Ultrasonic Velocity Meter to Measure Liquid Rheology. 2018 IEEE International Ultrasonics Symposium (IUS). 1–4. https://doi.org/10.1109/ULTSYM.2018.8580166.

H. Liu, C. Tan, F. Dong. 2020. Continuous-wave Ultrasonic Tomography for Oil/water Two-phase Flow Imaging using Regularized Weighted Least Square Frameworke. Transactions of the Institute of Measurement and Control. 42: 666–679. https://doi.org/10.1177/0142331219853073.

L. Jiangbo, S. Tang, X. Dai, Z. Fang. 2018. Investigation into the Effectiveness of Ultrasonic Tomography for Grouting Quality Evaluation. KSCE Journal of Civil Engineering. 22: 5094–5101. https://doi.org/10.1007/s12205-018-0091-x.

N. Li, K. Xu, S. Li. 2018. Numerical Simulation Study on Effectiveness of Shielding Structure on Ultrasonic Transmission Tomography. Eurasip Journal on Wireless Communications and Networking. 2018: 1–8. https://doi.org/10.1186/s13638-018-1094-5.

J. Jamaludin, R. A. Rahim, M. H. Fazul Rahiman, J. Mohd Rohani. 2018. Analysis on the Effect of Sensor Views in Image Reconstruction Produced by Optical Tomography System using Charge-coupled Device. IEEE Transactions on Image Processing. 27: 1689–1696. https://doi.org/10.1109/TIP.2017.2783620.

J. Jamaludin, R. Abdul Rahim, M. H. F. Rahiman, J. M. Rohani. 2020. CCD Optical Tomography System to Detect Solid Contamination in Crystal-clear Water. IEEE Transactions on Industrial Electronics. 67: 3248–3256. https://doi.org/10.1109/TIE.2019.2908589.

S. Z. M. Muji, R. J. Karim, R. Abdul Rahim. 2013. The Development of Hardware for Optical Tomography System. 4th International Conference on Photonics. ICP 2013 - Conference Proceeding, IEEE. 259–261. https://doi.org/10.1109/ICP.2013.6687132.

M. T. M. Khairi, S. Ibrahim, M. A. Md Yunus, M. N. M. Sulaiman. 2013. An Application of Independent Component Analysis Method for Estimating the Quality Level of Water using Optical Tomography. Proceedings - 2013 IEEE 4th Control and System Graduate Research Colloquium, ICSGRC 2013, IEEE. 11–16. https://doi.org/10.1109/ICSGRC.2013.6653267.

X. He, Y. Jiang, B. Wang, H. Ji, Z. Huang. 2021. An Image Reconstruction Method of Capacitively Coupled Electrical Impedance Tomography (CCEIT) based on DBSCAN and Image Fusion. IEEE Transactions on Instrumentation and Measurement. 70: 1–11. https://doi.org/10.1109/TIM.2021.3056739.

Y. Jiang, X. He, B. Wang, Z. Huang, M. Soleimani. 2020. On the Performance of a Capacitively Coupled Electrical Impedance Tomography Sensor with Different Configurations. Sensors (Switzerland). 20: 1–18. https://doi.org/10.3390/s20205787.

Y. Wang, H. Ji, Z. Huang, B. Wang, H. Li. 2020. Study on Image Reconstruction of Capacitively Coupled Electrical Impedance Tomography (CCEIT). 9th World Congress on Industrial Process Tomography (WCIPT9). 094002. https://doi.org/10.1088/1361-6501/ab1324.

W. Tian, J. Sun, M. F. Ramli, J. Wang, W. Yang. 2017. An Electrical Capacitance Tomography Sensor With Variable Diameter. IEEE Sensors Journal. 17: 2089–2099. https://doi.org/10.1109/JSEN.2017.2667716.

Y. Tian, Z. Cao, D. Hu, X. Gao, L. Xu, W. Yang. 2021. A Fuzzy PID-controlled Iterative Calderon’s Method for Binary Distribution in Electrical Capacitance Tomography. IEEE Transactions on Instrumentation and Measurement. 70. https://doi.org/10.1109/TIM.2021.3052249.

R. Omar, B. Hewakandamby, A. Azzi, B. Azzopardi. 2018. Fluid Structure Behaviour in Gas-oil Two-phase Flow in a Moderately Large Diameter Vertical Pipe. Chemical Engineering Science. 187: 377–390. https://doi.org/10.1016/j.ces.2018.04.075.

J. Long, M. A. R. Frias, K. Z. Mokhtar, W. Yang. 2018. An Integrated ECT and Electrostatic Sensor for Particulate Flow Measurement. IST 2018 - IEEE International Conference on Imaging Systems and Techniques, Proceedings. 1–5. https://doi.org/10.1109/IST.2018.8577202.

B. Liu, C. Tang, K. Tang, H. Hu. 2020. A Water Fraction Measurement Method using Heuristic-Algorithm-based Electrical Capacitance Tomography Images Post-processing Technology. IEEE Access. 8: 206418–206426. https://doi.org/10.1109/ACCESS.2020.3037721.

R. Li, Y. Zhang, L. Peng, X. Liao. 2020. An Image Reconstruction for Electrical Capacitance Tomography using Parametric Level Set. 2020 5th International Conference on Computer and Communication Systems, ICCCS. 2020384–390. https://doi.org/10.1109/ICCCS49078.2020.9118589.

Y. Gao, S. Chen, Q. Xu. 2018. Application of Electrical Capacitance Tomography in Pneumatic Conveying of Pulverized Coal. 2018 International Conference on Information, Cybernetics, and Computational Social Systems, ICCSS 2018, IEEE. 359–363. https://doi.org/10.1109/ICCSS.2018.8572356.

X. Fang, Y. Jiang, H. Ji, B. Wang, Z. Huang. 2024. A New CCERT System with Shielding for Gas-liquid Two-phase Flow. IEEE Transactions on Industrial Electronics. 71: 4241–4251. https://doi.org/10.1109/TIE.2023.3273267.

C. Luo, L. Zhu, Y. Jiang, M. Zhang, H. Ji, B. Wang, Z. Huang. 2023. A Two-stream Deep Imaging Method for Multifrequency Capacitively Coupled Electrical Resistance Tomography. IEEE Sensors Journal. 23: 4362–4372. https://doi.org/10.1109/JSEN.2022.3200960.

Z. Wang, Y. Jiang, J. Huang, B. Wang, H. Ji, Z. Huang. 2023. A New Image Reconstruction Algorithm for CCERT based on Improved DPC and K-Means. IEEE Sensors Journal. 23: 4476–4485. https://doi.org/10.1109/JSEN.2022.3185736.

D. Xu, X. Li, S. Zhang. 2022. A CCERT-based Tactile Sensor with Bidirectional Buffer. IEEE Sensors Journal. 22: 19480–19489. https://doi.org/10.1109/JSEN.2022.3205034.

Z. Xu, J. Huang, Y. Jiang, B. Wang, Z. Huang, M. Soleimani. 2021. An Image Reconstruction Algorithm for a 12-electrode Capacitively Coupled Electrical Resistance Tomography System under 2-electrode Excitation Strategy. IEEE Transactions on Instrumentation and Measurement. 70: 1–11. https://doi.org/10.1109/TIM.2021.3098388.

Li. Yang, S. You, Y. Tan. 2020. Solid Component Fraction in Multi-phase Flows using Electrical Resistance Tomography and Kalman Filter. 39th Chinese Control Conference. 6313–6317. https://doi.org/10.23919/ccc50068.2020.9188746.

C. Wu, M. Hutton, M. Soleimani. 2020. Limited Angle Electrical Resistance Tomography In Wastewater Monitoring. Sensors (Switzerland). 20. https://doi.org/10.3390/s20071899.

H. Zhang, C. Tan, F. Dong. 2020. Experimental Investigation of Liquid-solid Two-phase Flow with Electrical Resistance Tomography and Ultrasound Doppler. I2MTC 2020 - International Instrumentation and Measurement Technology Conference, Proceedings. 1–6. https://doi.org/10.1109/I2MTC43012.2020.9128814.

R. Kotzé, A. Adler, A. Sutherland, C. N. Deba. 2019. Evaluation of Electrical Resistance Tomography Imaging Algorithms to Monitor Settling Slurry Pipe Flow. Flow Measurement and Instrumentation. 68: 101572. https://doi.org/10.1016/j.flowmeasinst.2019.101572.

J. Zhang, H. Li, J. Ma, X. Chen, J. Xu. 2018. Study of the Swirling Flow Field Induced by Guide Vanes using Electrical Resistance Tomography and Numerical Simulations. Chemical Engineering Communications. 205: 1351–1364. https://doi.org/10.1080/00986445.2018.1450247.

S. A. Hashemi, R. B. Spelay, R. S. Sanders, B. T. Hjertaker. 2021. A Novel Method to Improve Electrical Resistance Tomography Measurement on Slurries Containing Clays. Flow Measurement and Instrumentation. 80: 101973. https://doi.org/10.1016/j.flowmeasinst.2021.101973.

H. Shaban, S. Tavoularis. 2017. Performance Evaluation of Conductivity Wire-mesh Sensors in Vertical Channels. Flow Measurement and Instrumentation. 54: 185–196. https://doi.org/10.1016/j.flowmeasinst.2017.02.003.

L. Zhai, J. Yang, Z. Meng, Z. Cui. 2020. Development of Wire-mesh Sensor in Small Bubble Visualization based on Differential Measurement Mode. I2MTC 2020 - International Instrumentation and Measurement Technology Conference, Proceedings. 3–7. https://doi.org/10.1109/I2MTC43012.2020.9129032.

S. Ren, H. Liu, C. Tan, F. Dong. 2017. Tomographic Wire-mesh Imaging of Water-air Flow based on Sparse Minimization. IEEE Sensors Journal. 17: 8187–8195. https://doi.org/10.1109/JSEN.2017.2752226.

C. Y. Ofuchi, H. K. Eidt, C. C. Rodrigues, E. N. Dos Santos, P. H. D. Dos Santos, M. J. da Silva, F. Neves, P. V. S. R. Domingos, R. E. M. Morales. 2019. Multiple Wire-mesh Sensors Applied to the Characterization of Two-phase Flow Inside a Cyclonic Flow Distribution System. Sensors (Switzerland). 19. https://doi.org/10.3390/s19010193.

K. Sun, Y. Li. 2020. An HDTV-SB Imaging Algorithm for Wire-mesh Tomography. Measurement Science and Technology. 31: 045404. https://doi.org/10.1088/1361-6501/ab463f.

M. Sambasivan, S. Gopal. 2019. Handbook of Oil and Gas Piping : A Practical and Comprehensive Guide. CRC Press, Netherlands. https://www.scribd.com/document/403192359/Handbook-of-Oil-and-Gas-Piping-a-Practical-and-Comprehensive-Guide-2019-pdf.

H. Guo, S. Liu, H. Cheng, S. Sun, J. Ding, H. Guo. 2020. Iterative Computational Imaging Method for Flow Pattern Reconstruction based on Electrical Capacitance Tomography. Chemical Engineering Science. 214: 115432. https://doi.org/10.1016/j.ces.2019.115432.

B. K. Singh, S. Roy, V. V. Buwa. 2019. Bubbling/slugging Flow Behavior in a Cylindrical Fluidized Bed: ECT Measurements and Two-fluid Simulations. Chemical Engineering Journal. 383: 123120. https://doi.org/10.1016/j.cej.2019.123120.

S. R. Aw, W. Azman, W. Abdullah, R. A. Rahim, Y. A. Wahab, M. Hafiz, F. Rahiman, Z. Zakaria, E. J. Mohamed, S. Z. Muji. 2021. Graphical User Interface for Electrical Resistance Tomography System on Static Gas Bubble in a Vertical Metallic Column. 20: 99–102.

C. K. Seong, J. Pusppanathan, R. Abdul Rahim, G. C. Loon, Y. S. L. Susiapan, F. A. Phang, M. H. Fazalul Rahiman. 2015. Hardware Development of Electrical Capacitance Tomography (ECT) System with Capacitance Sensor for Liquid Measurements. Jurnal Teknologi. 73: 13–22. https://doi.org/10.11113/jt.v73.4399.

A. E. C. Man, Y. A. Wahab, N. A. TalipYusof, S. R. Aw, M. M. Saari, R. A. Rahim, S. Y. Yu. 2022. Simulation of Frequency Selection for Invasive Approach of Electrical Capacitance Tomography for Conducting Pipe Application Using Oil-Gas Regimes. IET Conference Proceedings. 2022: 63–68. https://doi.org/10.1049/icp.2022.2571.

Downloads

Published

2025-06-13

Issue

Section

Science and Engineering

How to Cite

REVEALING THE UNSEEN: A BRIEF REVIEW OF INVASIVE AND NON-INVASIVE PROCESS TOMOGRAPHY IN INDUSTRY. (2025). Jurnal Teknologi (Sciences & Engineering), 87(4), 793-807. https://doi.org/10.11113/jurnalteknologi.v87.23257