Improved Performance of PAN-based UF Membrane with PAN-g-PVA Amphiphilic Copolymer

Authors

  • N. A. M. Nazri Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • W. J. Lau Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • A. F. Ismail Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. A. R. Saidin Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v65.2332

Keywords:

Amphiphilic copolymer, ultrafiltration, poly (acrylonitrile), protein rejection, poly (vinyl alcohol)

Abstract

The present study focuses on the effect of poly (acrylonitrile) (PAN)-g-poly (vinyl alcohol) (PVA) amphiphilic copolymer as an additive on fabrication of PAN-based UF hollow fiber membrane. The PAN-based hollow fiber membranes with different copolymer composition in dope solution were prepared via dry-wet phase inversion process. Compared to PAN-based membrane, membranes incorporated with PAN-g-PVA copolymer displayed good morphology and better hydrophilicity. It is found that pure water flux of the membrane incorporated with amphiphilic copolymer was 5 times higher than that of control membrane, recording 244.97 L/m2.hr when tested at 1 bar. Results also showed that the UF membranes incorporated with amphiphilic copolymer were able to retain efficiently bovine serum albumin (BSA) (66 kDa) and possessed better anti-fouling performance.

References

Y-Q. Wang, T. Wang, Y-L. Su, F-B. Peng, H. Wu, Z-Y. Jiang. 2005. Langmuir. 21: 11856.

Y. M. Lo, D. Cao, S. Argin-Soysal, J. Wang,T-S. Hahm. 2005. Bioresource Technology. 96: 687.

P. D. Peeva, T. Knoche, T. Pieper, M. Ulbricht. 2012. Separation and Purification Technology. 92: 83.

A. Saxena, B. P. Tripathi, M. Kumar, V. K. Shahi. 2009. Advances in Colloid and Interface Science. 145: 1.

Y. Su, C. Li, W. Zhao, Q. Shi, H. Wang, Z. Jiang, S. Zhu. 2008. Journal of Membrane Science. 322: 171.

Q. Shi, Y. Su, W. Zhao, C. Li, Y. Hu, Z. Jiang, S. Zhu. 2008. Journal of Membrane Science. 319: 271.

B. Jung. 2004. Journal of Membrane Science. 229: 129–136.

E. Ruckenstein, Z. F. Li. 2005. Advances in Colloid and Interface Science. 113: 43.

J. F. Hester, P. Banerjee, A. M. Mayes. 1999. Macromolecules. 32: 1643.

B. Liu, C. Chen, T. Li, J. Crittenden, Y. Chen. 2013. Journal of Membrane Science. Accepted Manuscript

Asatekin, S. Kang, M. Elimelech, A. M. Mayesc. 2007. Journal of Membrane Science. 298: 136.

X. Chen, Y. Su, F. Shen, Y. Wan. 2011. Journal of Membrane Science. 384: 44.

Q. Sun, Y. Su, X. Ma, Y. Wang, Z. Jiang. 2006. Journal of Membrane Science. 285: 299.

Z. Tang, J. Wei, L. Yung, B. Ji, H. Ma, C. Qiu, K. Yoon, F. Wan, D. Fang, B. S. Hsiao, B. Chu. 2009. Journal of Membrane Science. 328: 1.

Y. Zhang, H. Li, H. Li, R. Li, C. Xiao. 2006. Desalination. 192: 214.

Y. Shang, Y. Peng. 2007. Desalination. 204: 322.

Downloads

Published

2013-11-15

How to Cite

Improved Performance of PAN-based UF Membrane with PAN-g-PVA Amphiphilic Copolymer. (2013). Jurnal Teknologi (Sciences & Engineering), 65(4). https://doi.org/10.11113/jt.v65.2332