EFFECTS OF BLAINVILLEA ACMELLA ON THE BONE MECHANICAL PROPERTIES OF OVARIECTOMIZED RATS

Authors

  • Mohd Maaruf Abdul Malik Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia ᵇFaculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia https://orcid.org/0000-0002-5676-3715
  • Goot Heah Khor Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia
  • ‘Atiqah Azam Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia
  • Nurul Raudzah Adib Ridzuan Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia
  • Elvy Suhana Mohd Ramli Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
  • Isa Naina Mohamed Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
  • Ahmad Nazrun Shuid Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.23320

Keywords:

Bone mechanical properties, Blainvillea acmella, osteoporosis, ovariectomised rat, three-point bending

Abstract

A metabolic bone disorder known as osteoporosis is represented by low mineral bone mass and strength. Blainvillea acmella (BA), a herbal plant with antioxidant properties have exhibited anti-osteoporosis effects. The present study set out to discover the osteoprotective effects of BA on bone mechanical properties of the ovariectomized rat model of osteoporosis. Twenty-four Sprague-Dawley female rats were designated into four groups (n=6 per group), namely, (SHAM) sham-operated, (OVX) ovariectomized control, (OVX+E) ovariectomized and supplemented with Premarin 64.5 µg/kg and (OVX+BA) ovariectomized and supplemented with 100 mg/kg of BA ethanolic leaves extract. All rats were euthanized after 12 weeks and the right femurs were tested in three-point bending using Instron Universal Test Machine (Shimadzu AG-X 500N). The bone mechanical properties were evaluated in two parts: extrinsic factors (load, displacement and stiffness) as well as intrinsic factors (stress, strain and Young modulus). The maximum stress and Young modulus of OVX+E and OVX+BA groups indicated considerably higher levels compared to SHAM and OVX groups (p<0.05). No significant differences were found in bone strength between OVX+E and OVX+BA groups. In conclusion, BA leaves extract was comparable to Premarin in maintaining optimal bone strength of the ovariectomized rat model of osteoporosis. Therefore, BA potential in treatment of osteoporosis warrants further investigation.

References

Fukumoto, S. & T. Matsumoto. 2017. Recent Advances in the Management of Osteoporosis. F1000Research. 6: 625.

Doi: https://doi.org/10.12688/f1000research.10682.1.

International Society for Clinical Densitometry. (2019). Adult official positions of the ISCD [Position statement]. Retrieved July 2021, from https://www.iscd.org/learn/official-positions/adult-positions/.

Veronese, N., H. Kolk, & S. Maggi. 2020. Epidemiology of Fragility Fractures and Social Impact. In P. Falaschi (Eds.) et. al. Orthogeriatrics: The Management of Older Patients with Fragility Fractures. (2nd ed., pp. 19–34). Springer.

Doi: https://doi.org/10.1007/978-3-030-48126-1_2.

Mithal, A., B. Bansal, C. S. Kyer, P. Ebeling. 2014. The Asia-Pacific Regional Audit-Epidemiology, Costs, and Burden of Osteoporosis in India 2013: A report of International Osteoporosis Foundation. Indian Journal of Endocrinology and Metabolism. 18(4): 449−454.

Doi: https://doi.org/10.4103/2230-8210.137485.

Cheung, C. L., S. B. Ang, M. Chadha, E. S. Chow, Y. S. Chung, F. L. Hew, U. Jaisamrarn, H. Ng, Y. Takeuchi, C. H. Wu, W. Xia, J. Yu & S. Fujiwara. 2018. An updated hip Fracture Projection in Asia: The Asian Federation of Osteoporosis Societies Study. Osteoporosis and Sarcopenia. 4(1): 16–21.

Doi: https://doi.org/10.1016/j.afos.2018.03.003.

Cheng, C. H., L. R. Chen & K. H. Chen. 2022. Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. International Journal of Molecular Sciences. 23(3): 1376.

Doi: https://doi.org/10.3390/ijms23031376.

Emmanuelle, N. E., V. Marie-Cécile, T. Florence, A. Jean-François, L. Françoise, F. Coralie & V. Alexia. 2021. Critical Role of Estrogens on Bone Homeostasis in Both Male and Female: From Physiology to Medical Implications. International Journal of Molecular Sciences. 22(4): 1568.

Doi: https://doi.org/10.3390/ijms22041568.

Nie, T., V. S. Venkatesh, S. Golub, K. S. Stok, H. Hemmatian, R. Desai, D. J. Handelsman, J. D. Zajac, M. Grossmann & R. A. Davey. 2024. Estradiol Increases Cortical and Trabecular Bone Accrual and Bone Strength in an Adolescent Male-to-female Mouse Model of Gender-affirming Hormone Therapy. Bone Research. 12(1): 1.

Doi: https://doi.org/10.1038/s41413-023-00308-2.

Hamoda, H., N. Panay, H. Pedder, R. Arya, M. Savvas. 2020. The British Menopause Society & Women’s Health Concern 2020 recommendations on hormone replacement therapy in menopausal women. Post Reproductive Health. 26(4): 181−209.

Doi: https://doi.org/10.1177/2053369120957514.

Gupta, M. & N. Gupta. 2024. Bisphosphonate Related Jaw Osteonecrosis. [Updated 2023 Jul 24], In: StatPearls [Internet], Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534771/.

Maximov, P. Y., T. M. Lee & V. C. Jordan. 2013. The Discovery and Development of Selective Estrogen Receptor Modulators (SERMs) for Clinical Practice. Current Clinical Pharmacology. 8(2): 135–155.

Doi: https://doi.org/10.2174/1574884711308020006.

Bassuk, S. S. & J. E. Manson. 2014. Menopausal Hormone Therapy and Cardiovascular Disease Risk: Utility of Biomarkers and Clinical Factors for Risk Stratification. Clinical Chemistry. 60(1): 68–77.

Doi: https://doi.org/10.1373/clinchem.2013.202556.

Shuid, A. N., L. L. Ping, N. Muhammad, N. Mohamed & I. N. Soelaiman. 2011. The Effects of Labisia pumila var. alata on Bone Markers and Bone Calcium in a Rat Model of Post-Menopausal Osteoporosis. Journal of Ethnopharmacology. 133(2): 538−42.

Doi: https://doi.org/10.1016/j.jep.2010.10.033.

Hayatullina, Z., N. Muhammad, N. Mohamed & I. N. Soelaiman. 2012. Virgin Coconut Oil Supplementation Prevents Bone Loss in Osteoporosis Rat Model. Evidence-based Complementary and Alternative Medicine: eCAM, 2012. 237236.

Doi: https://doi.org/10.1155/2012/237236.

Yudaniayanti, I., H. Primarizky & l. Nangoi. 2018. The Effects of Honey (Apis dorsata) Supplements on Increased Bone Strength in Ovariectomized Rat as Animal Model of Osteoporosis. AIP Conference Proceedings. 1945: 020004.

Doi: https://doi.org/10.1063/1.5030226.

Abdul Rahim, R., P. A. Jayusman, V. Lim, N. H. Ahmad, Z. A. Abdul Hamid, S. Mohamed, N. Muhammad, F. Ahmad, N. Mokhtar, N. Mohamed, A. N. Shuid & I. Naina Mohamed. 2022. Phytochemical Analysis, Antioxidant and Bone Anabolic Effects of Blainvillea acmella (L.) Philipson. Frontiers in Pharmacology. 12: 796509.

Doi: https://doi.org/10.3389/fphar.2021.796509.

Spelman, K., D. Depoix, M. McCray, E. Mouray & P. Grellier. 2011. The Traditional Medicine Spilanthes Acmella, and the Alkylamides Spilanthol and Undeca-2E-ene-8,10-diynoic Acid Isobutylamide, Demonstrate In Vitro and In Vivo Antimalarial Activity. Phytotherapy research: PTR. 25(7): 1098–1101.

Doi: https://doi.org/10.1002/ptr.3395.

Sharma, V., J. Boonen, N. S. Chauhan, M. Thakur, B. De Spiegeleer and V. K. Dixit. 2011. Spilanthes Acmella Ethanolic Flower Extract: LC-MS Alkylamide Profiling and its Effects on Sexual Behavior in Male Rats. Phytomedicine. 18(13): 1161–1169.

Doi: https://doi.org/10.1016/j.phymed.2011.06.001.

Sharma, R. and N. Arumugam. 2021. N-alkylamides of Spilanthes (Syn: Acmella): Structure, Purification, Characterization, Biological Activities and Applications - A Review. Future Foods. 3(February): 100022.

Doi: https://doi.org/10.1016/j.fufo.2021.100022.

Widyowati, R. 2011. Alkaline Phosphatase Activity of Graptophyllum Pictum and Sphilanthes Acmella Fractions Against Mc3T3 E1 Cells As Marker of Osteoblast Differentiation Cells. Int. J. Pharm. Pharm. Sci. 3: 1–4.

Widyowati, R., M. I. Sulistyowaty, N. H. Uyen, S. Sugimoto, Y. Yamano, H. Otsuka et al. 2020. New Methyl Threonolactones and Pyroglutamates of Spilanthes Acmella (L.) L. And Their Bone Formation Activities. Molecules. 25(11): 2500.

Doi: https://doi.org/10.3390/molecules25112500.

Yousefzadeh, N., K. Kashfi, S. Jeddi & A. Ghasemi. 2020. Ovariectomized Rat Model of Osteoporosis: A Practical Guide. EXCLI Journal. 19: 89–107.

Doi: https://doi.org/10.17179/excli2019-1990.

Effendy, N. M. & A. N. Shuid. 2014. Time and Dose-dependent Effects of Labisia pumila on Bone Oxidative Status of Postmenopausal Osteoporosis Rat Model. Nutrients. 6(8): 3288–3302.

Doi: https://doi.org/10.3390/nu6083288.

Laswati, H., I. Subadi, R. Widyowati, M. Agil, J. Pangkahila. 2015. Spilanthes Acmella and Physical Exercise Increased Testosterone Levels and Osteoblast Cells in Glucocorticoid-Induced Osteoporosis Male MICE. Bali Medical Journal, 4(2): 76−81.

Doi: https://doi.org/10.15562/bmj.v4i2.124.

de Villiers, T. J. 2024. Bone health and menopause: Osteoporosis Prevention and Treatment. Best Practice & Research Clinical Endocrinology & Metabolism. 38(1): 101782.

Doi: https://doi.org/10.1016/j.beem.2023.101782.

Nabi, N. G., M. Shrivastava. 2016. Estimation of Total Flavonoids and Antioxidant Activity of Spilanthes acmella Leaves. Pharm. Biosci. J. 4: 29.

Doi: https://doi.org/10.20510/ukjpb/4/i6/134657.

Tanwer, B. S., R. Choudhary, R. Vijayvergia. 2010. In Vitro and In Vivo Comparative Study of Primary Metabolites and Antioxidant Activity in Spilanthes Acmella Murr. International Journal of Biotechnology and Biochemistry. 6: 819−825. Available from: http://www.ripublication.com/ijbb.htm.

Thakur, S., A. Sagar, V. Prakash. 2019. Studies on Antibacterial and Antioxidant Activity of Different Extracts of Spilanthes acmella L. Plant Arch. 19: 1711–1717.

Malik, M. M. A., F. Othman, F. Hussan, A. N. Shuid & Q. M. Saad. 2019. Combined Virgin Coconut Oil and Tocotrienol-rich Fraction Protects against Bone Loss in Osteoporotic Rat Model. Veterinary World. 12(12): 2052–2060.

Doi: https://doi.org/10.14202/vetworld.2019.2052-2060.

Mohd Effendy, N., S. Abdullah, M. F. M. Yunoh et al. 2015. Time and Dose-dependent Effects of Labisia pumila on the Bone Strength of Postmenopausal Osteoporosis Rat Model. BMC Complement Altern Med.15: 58.

Doi: https://doi.org/10.1186/s12906-015-0567-x.

Fathilah, S. N., S. Abdullah, N. Mohamed & A. N. Shuid. 2012. Labisia pumila Prevents Complications of Osteoporosis by Increasing Bone Strength in a Rat Model of Postmenopausal Osteoporosis. Evidence-based Complementary and Alternative Medicine: Ecam. 948080.

Doi: https://doi.org/10.1155/2012/948080.

Abdul Rahim, R., P. A. Jayusman, N. Muhammad, N. Mohamed, V. Lim, N. H. Ahmad et al. 2021. Potential Antioxidant and Anti-Inflammatory Effects of Spilanthes Acmella and its Health Beneficial Effects: A Review. Int. J. Environ. Res. Public Health. 18(7): 3532.

Doi: https://doi.org/10.3390/ijerph1807353.

Downloads

Published

2025-08-22

Issue

Section

Science and Engineering

How to Cite

EFFECTS OF BLAINVILLEA ACMELLA ON THE BONE MECHANICAL PROPERTIES OF OVARIECTOMIZED RATS. (2025). Jurnal Teknologi (Sciences & Engineering), 87(5), 967-974. https://doi.org/10.11113/jurnalteknologi.v87.23320