OPTIMISATION OF FRUIT VINEGAR PROCESS FROM BACCAUREA LANCEOLATA (MIQ.) MÜLL.ARG. USING CENTRAL COMPOSITE DESIGN WITH ANTIOXIDANT AND ANTIMICROBIAL POTENTIAL
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.23406Keywords:
Baccaurea lanceolata, Fruit vinegar, Antioxidant, Antimicrobial, Central composite designAbstract
Baccaurea lanceolata (Miq.) Müll.Arg., native to Southeast Asia, is valued in traditional practices and local diets for its potential medicinal properties. However, the biological activities of its fruit vinegar remain underexplored. This study aimed to optimise and evaluate the antioxidant and antimicrobial properties of B. lanceolata fruit vinegar (BLFV). A central composite design was applied to optimise fermentation time (FT), sugar concentration (SC), and solid-to-liquid ratio (SLR) as component variables, with total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay as response variables. The antimicrobial activity of the optimised BLFV was assessed against Gram-positive (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative (Acinetobacter baumannii and Klebsiella pneumoniae) bacteria using the disc diffusion method. The optimised BLFV process, using a 2-month FT, 20% SC, and 1:2 g/mL SLR, achieved the following response factors: 438.070 ± 0.130 mg GAE/L vinegar (TPC), 10.466 ± 0.130 mg CE/L vinegar (TFC), and 83.212 ± 0.130% (DPPH). Additionally, the optimised BLFV exhibited antimicrobial activity with inhibition zones measuring 8.03 ± 0.01 mm (E. faecalis), 9.06 ± 0.04 mm (S. aureus), 7.06 mm ± 0.01 (A. baumannii), and 7.20 ± 0.01 mm (K. pneumoniae). This study successfully optimised the BLFV process, highlighting its antioxidant and antimicrobial properties, which hold promise for applications in developing nutraceuticals and functional foods.
References
Luzón-Quintana, L. M., Castro, R., and Durán-Guerrero, E. 2021. Biotechnological Processes in Fruit Vinegar Production. Foods. 10(5): 945.
Doi: https://doi.org/10.3390/foods10050945.
Ousaaid, D., Mechchate, H., Laaroussi, H., Hano, C., Bakour, M., Ghouizi, A. E., Conte, R., Lyoussi, B., and Arabi, I. E. 2022. Fruits Vinegar: Quality Characteristics, Phytochemistry, and Functionality. Molecules. 27(1): 222.
Doi: http://doi.org/10.3390/molecules27010222.
Perumpuli, P. A. B. N., and Dilrukshi, D. M. N. 2022. Vinegar: A Functional Ingredient for Human Health. International Food Research Journal. 29(5): 959–74.
Doi: http://doi.org/10.47836/ifrj.29.5.01.
Mojulat, M. B. C., and Surugau, N. 2021. A Review on Benefits, Potential and Conservation of Baccaurea lanceolata. IOP Conference Series: Earth and Environmental Science. 736(1): 012042.
Doi: http://doi.org/10.1088/1755-1315/736/1/012042.
Charu, T. K., Chowdhury, N. S., Fatema, I. B., Liya, F. I., and Salsabil, L. 2021. Traditional and Pharmacological Reports of the Genus Baccaurea. A Review. American Journal of Biomedical Science and Research. 11(6): 494–508.
Doi: http://doi.org/10.34297/ajbsr.2021.11.001683.
de Oliveira, L. G., de Paiva, A. P., Balestrassi, P. P., Ferreira, J. R., da Costa, S. C., and da Silva Campos, P. H. 2019. Response Surface Methodology for Advanced Manufacturing Technology Optimization: Theoretical Fundamentals, Practical Guidelines, and Survey Literature Review. International Journal of Advanced Manufacturing Technology. 104(5–8): 1785–1837.
Doi: https://doi.org/10.1007/s00170-019-03809-9.
Riswanto, F. D. O., Rohman, A., Pramono, S., and Martono, S. 2019. Application of Response Surface Methodology as Mathematical and Statistical Tools in Natural Product Research. Journal of Applied Pharmaceutical Science. 9(10): 125–133.
Doi: https://doi.org/10.7324/JAPS.2019.91018.
Yıkmış, S. 2019. Optimization of Uruset Apple Vinegar Production Using Response Surface Methodology for the Enhanced Extraction of Bioactive Substances. Foods. 8(3): 107.
Doi: http://doi.org/10.3390/foods8030107.
Chua, L. S., and Abd Wahab, N. S. 2023. Drying Kinetic of Jaboticaba Berries and Natural Fermentation for Anthocyanin-Rich Fruit Vinegar. Foods. 12(1): 65.
Doi: http://doi.org/10.3390/foods12010065.
Divyashree, H. N., Narayanaswamy, B., and Tejashwini, N. K. 2022. Standardization of Sugar Concentration for Vinegar Production. The Pharma Innovation. 11(3): 254–6.
Benjamin, M. A. Z., Ng, S. Y., Saikim, F. H., and Rusdi, N. A. 2022. The Effects of Drying Techniques on Phytochemical Contents and Biological Activities on Selected Bamboo Leaves. Molecules. 27(19): 6458.
Doi: http://doi.org/10.3390/molecules27196458.
Jinin, N. A. Z., Benjamin, M. A. Z., and Awang, M. A. 2024. Drying Kinetics and Quality Assessment of Noodles from Piper sarmentosum Roxb. (Kaduk) Leaves. Malaysian Journal of Fundamental and Applied Sciences. 20(4): 835–51.
Doi: http://doi.org/10.11113/mjfas.v20n4.3519.
Awang, M. A., Benjamin, M. A. Z., Anuar, A., Ismail, M. F., Ramaiya, S. D., and Mohd Hashim, S. N. A. 2023. Dataset of Gallic Acid Quantification and Their Antioxidant and Anti-Inflammatory Activities of Different Solvent Extractions from Kacip Fatimah (Labisia pumila Benth. & Hook. f.) Leaves. Data in Brief. 51: 109644.
Doi: http://doi.org/10.1016/j.dib.2023.109644.
Azelan, N. A., Hasham, R., Awang, M. A., Malek, R. A., Musa, N. F., and Aziz, R. 2015. Antibacterial Activity of Zingiber officinale and Zingiber zerumbet Essential Oils Extracted by Using Turbo Extractor Distillator (TED). Jurnal Teknologi. 77(3): 43–7.
Doi: http://doi.org/10.11113/jt.v77.6003.
Jinoni, D. A., Benjamin, M. A. Z., Mus, A. A., Goh, L. P. W., Rusdi, N. A., and Awang, M. A. 2024. Phaleria macrocarpa (Scheff.) Boerl. (Mahkota Dewa) Seed Essential Oils: Extraction Yield, Volatile Components, Antibacterial, and Antioxidant Activities Based on Different Solvents Using Soxhlet Extraction. Kuwait Journal of Science. 51: 100173.
Doi: http://doi.org/10.1016/j.kjs.2023.100173.
Agacayak, T., and Osman Abdelraheem Ahmed, M. T. 2020. Optimization and Modeling of Leaching Parameters Affecting Nickel Dissolution from Lateritic Ore in Eskisehir (Mihaliccik-Yunusemre) using Box-Behnken Experimental Design. Journal of Environmental Analytical Chemistry. 7(1): 1–7.
Doi: http://doi.org/10.37421/jreac.2020.7.263.
Payet, B., Sing, A. S. C., and Smadja, J. 2005. Assessment of Antioxidant Activity of Cane Brown Sugars by ABTS and DPPH Radical Scavenging Assays: Determination of Their Polyphenolic and Volatile Constituents. Journal of Agricultural and Food Chemistry. 53(26): 10074–9.
Doi: http://doi.org/10.1021/jf0517703.
Liu, Q., Tang, G.-Y., Zhao, C.-N., Gan, R.-Y., and Li, H.-B. 2019. Antioxidant Activities, Phenolic Profiles, and Organic Acid Contents of Fruit Vinegars. Antioxidants. 8(4): 78.
Doi: http://doi.org/10.3390/antiox8040078.
Hammouda, M. Ben., Castro, R., Durán-Guerrero, E., Attia, H., and Azabou, S. 2023. Vinegar Production via Spontaneous Fermentation of Different Prickly Pear Fruit Matrices: Changes in Chemical Composition and Biological Activities. Journal of the Science of Food and Agriculture. 103(11): 5221–30.
Doi: http://doi.org/10.1002/jsfa.12605.
Călinoiu, L. F., Cătoi, A.-F., and Vodnar, D. C. 2019. Solid-State Yeast Fermented Wheat and Oat Bran as a Route for Delivery of Antioxidants. Antioxidants. 8(9): 372.
Doi: http://doi.org/10.3390/antiox8090372.
Wang, Z., Dou, R., Yang, R., Cai, K., Li, C., and Li, W. 2021. Changes in Phenols, Polysaccharides and Volatile Profiles of Noni (Morinda citrifolia L.) Juice during Fermentation. Molecules. 26(9): 2604.
Doi: http://doi.org/10.3390/molecules26092604.
Jayasree Radhakrishnan, A., and Venkatachalam, S. 2020. A Holistic Approach for Microwave Assisted Solvent Extraction of Phenolic Compounds from Ficus benghalensis Fruits and Its Phytochemical Profiling. Journal of Food Process Engineering. 43(11): e13536.
Doi: http://doi.org/10.1111/jfpe.13536.
Yaghoobi, M., Sanikhani, M., Samimi, Z., and Kheiry, A. 2022. Selection of a Suitable Solvent for Bioactive Compounds Extraction of Myrtle (Myrtus communis L.) Leaves Using Ultrasonic Waves. Journal of Food Processing and Preservation. 46(3): e16357.
Doi: http://doi.org/10.1111/jfpp.16357.
Okur, I., Namlı, S., Oztop, M. H., and Alpas, H. 2023. High-Pressure-assisted Extraction of Phenolic Compounds from Olive Leaves: Optimization and Comparison with Conventional Extraction. ACS Food Science and Technology. 3(1): 161–9.
Doi: http://doi.org/10.1021/acsfoodscitech.2c00346.
Benjamin, M. A. Z., Tun Faisal Ismail, T. F. A. H., and Awang, M. A. 2024. Optimisation of Solid-to-Liquid Ratio in Morinda citrifolia L. Fruits: Enhancing Yield and Total Flavonoid Content Through Extraction Kinetics with High Antioxidant Potential. Malaysian Journal of Chemistry. 26(4): 187–205.
Doi: http://doi.org/10.55373/mjchem.v26i4.187.
Zhao, Y.-S., Eweys, A.S., Zhang, J.-Y., Zhu, Y., Bai, J., Darwesh, O. M., Zhang, H.-B., and Xiao, X. 2021. Fermentation Affects the Antioxidant Activity of Plant-Based Food Material through the Release and Production of Bioactive Components. Antioxidants. 10(12): 2004.
Doi: http://doi.org/10.3390/antiox10122004.
Cao, C., Lin, D., Zhou, Y., Li, N., Wang, Y., Gong, W., Zhu, Z., Liu, C., Yan, L., and Hu, Z. 2023. Solid-State Fermentation of Apocynum venetum L. by Aspergillus niger: Effect on Phenolic Compounds, Antioxidant Activities and Metabolic Syndrome-Associated Enzymes. Frontiers in Nutrition. 10: 1125746.
Doi: http://doi.org/10.3389/fnut.2023.1125746.
Choommongkol, V., Punturee, K., Klumphu, P., Rattanaburi, P., Meepowpan, P., and Suttiarporn, P. 2022. Microwave-Assisted Extraction of Anticancer Flavonoid, 2’,4’-Dihydroxy-6’-methoxy-3’,5’-dimethyl Chalcone (DMC), Rich Extract from Syzygium nervosum Fruits. Molecules. 27(4): 1397.
Doi: http://doi.org/10.3390/molecules27041397.
Yu, M., Wang, B., Qi, Z., Xin, G., and Li, W. 2019. Response Surface Method was Used to Optimize the Ultrasonic Assisted Extraction of Flavonoids from Crinum asiaticum. Saudi Journal of Biological Sciences. 26(8): 2079–84.
Doi: http://doi.org/10.1016/j.sjbs.2019.09.018.
Khan, U., Hayat, F., Khanum, F., Shao, Y., Iqbal, S., Munir, S., Abdin, M., Li, L., Ahmad, R.M., Qiu, J., and Xin, Z. 2023. Optimizing Extraction Conditions and Isolation of Bound Phenolic Compounds from Corn Silk (Stigma maydis) and Their Antioxidant Effects. Journal of Food Science. 88(8): 3341–56.
Doi: http://doi.org/10.1111/1750-3841.16682.
Zou, B., Wu, J., Yu, Y., Xiao, G., and Xu, Y. 2017. Evolution of the Antioxidant Capacity and Phenolic Contents of Persimmon During Fermentation. Food Science and Biotechnology. 26(3): 563–71.
Doi: http://doi.org/10.1017/S0022029901004940.
Gong, P., Guo, Y., Chen, X., Cui, D., Wang, M., Yang, W., and Chen, F. 2022. Structural Characteristics, Antioxidant and Hypoglycemic Activities of Polysaccharide from Siraitia grosvenorii. Molecules. 27(13): 4192.
Doi: http://doi.org/10.3390/molecules27134192.
Hudzicki, J. 2009. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. Washington, DC: American Society for Microbiology.
Perez, F., Endimiani, A., Ray, A. J., Decker, B. K., Wallace, C. J., Hujer, K. M., Ecker, D. J., Adams, M. D., Toltzis, P., Dul, M. J., Windau, A., Bajaksouzian, S., Jacobs, M. R., Salata, R. A., and Bonomo, R. A. 2010. Carbapenem-Resistant Acinetobacter baumannii and Klebsiella pneumoniae Across a Hospital System: Impact of Post-Acute Care Facilities on Dissemination. Journal of Antimicrobial Chemotherapy. 65(8): 1807–18.
Doi: http://doi.org/10.1093/jac/dkq191.
Colombo, A. V., Barbosa, G. M., Higashi, D., di Micheli, G., Rodrigues, P. H., and Simionato, M. R. L. 2013. Quantitative Detection of Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa in Human Oral Epithelial Cells from Subjects with Periodontitis and Periodontal Health. Journal of Medical Microbiology. 62(Pt 10): 1592–600.
Doi: http://doi.org/10.1099/jmm.0.055830-0.
Yagnik, D., Ward, M., and Shah, A. J. 2021. Antibacterial Apple Cider Vinegar Eradicates Methicillin Resistant Staphylococcus aureus and Resistant Escherichia coli. Scientific Reports. 11(1): 1854.
Doi: http://doi.org/10.1038/s41598-020-78407-x.
Fernandes, A. C. F., de Souza, A. C., Ramos, C. L., Pereira, A. A., Schwan, R. F., and Dias, D. R. 2019. Sensorial, Antioxidant and Antimicrobial Evaluation of Vinegars from Surpluses of Physalis (Physalis pubescens L.) and Red Pitahaya (Hylocereus monacanthus). Journal of the Science of Food and Agriculture. 99(5): 2267–74.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.













