TAGUCHI OPTIMIZATION OF X70 CARBON STEEL HEAT TREATMENT: A STUDY ON HARDNESS, THICKNESS AND PHASE ANALYSIS

Authors

  • Umi Zalilah Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia https://orcid.org/0009-0001-9436-8409
  • Dharmesh Kumar Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
  • Skandha Kumar Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
  • Mazli Mustapha Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.23474

Keywords:

Pipeline steel, Heat treatment, Iron oxide, Phase analysis, Carbon Fiber Metal Laminate

Abstract

The application of carbon steel fiber metal laminate (CFML) has been increasing in engineering industries such as aerospace, automotive and processing industries. In fabricating CFML, the surface quality is a fundamental criterion as its stability is the key to avoiding delamination and corrosion. Delamination and corrosion can be prevented by growing a fresh and stable oxide layer with good mechanical properties via heat treatment on carbon steel. In this paper, the influence of heat treatment parameters namely temperature (400, 600 and 800 ⁰C), heating time (60, 90 and 120 min), heating rate (10, 15 and 20 ⁰C/min) and substrate roughness (P80, P240 and P800) on the X70 carbon steel oxide phase formation, thickness and hardness properties were investigated. Using Taguchi’s method, a total of 9 experiments were performed based on the L9 orthogonal array. The signal-to-noise ratio (S/N) and contribution percentage of the analysis of variance (ANOVA) of each parameter on the responses were studied. The optimal conditions for thickness were obtained at temperature 800 ⁰C, heating time 120mins, heating rate 10 ⁰C/min and sample prepared with P80 sandpaper grit. Meanwhile, optimal conditions for hardness were obtained at temperature 800 ⁰C, heating time 120mins, heating rate 10 ⁰C/min and sample prepared with P80 sandpaper grit.

References

H. Karampour, M. Alrsai, F. Albermani, H. Guan, and D.-S. Jeng. 2017. Propagation Buckling in Subsea Pipe-in-Pipe Systems. J. Eng. Mech. 143(9): 04017113. Doi: 10.1061/(ASCE)EM.1943-7889.0001337.

G. P. Drumond, I. P. Pasqualino, B. C. Pinheiro, and S. F. Estefen. 2018. Pipelines, Risers and Umbilicals Failures: A Literature Review. Ocean Engineering. 148: 412–425. Doi: 10.1016/j.oceaneng.2017.11.035.

M. S. Egene, O. Adedipe, U. G. Okoro, and K. T. Obanimomo. 2021. Investigation of Fracture Behaviour of API X70 Pipeline Steel. IOP Conf. Ser.: Mater. Sci. Eng. 1107(1): 012184. Doi: 10.1088/1757-899X/1107/1/012184.

E. Arzaghi, B. H. Chia, M. M. Abaei, R. Abbassi, and V. Garaniya. 2020. Pitting Corrosion Modelling of X80 Steel Utilized in Offshore Petroleum Pipelines. Process Safety and Environmental Protection. 141: 135–139. Doi: 10.1016/j.psep.2020.05.024.

G. Yang et al. 2024. Effect of Dissolved Oxygen on Corrosion Behavior and Mechanism of X70 Pipeline Steel in Simulated Low Temperature Bentonite-containing Alkaline Chloride Environment. Construction and Building Materials. 438: 137170. Doi: 10.1016/j.conbuildmat.2024.137170.

T. T. Nguyen, H. M. Heo, J. Park, S. H. Nahm, and U. B. Beak. 2021. Fracture Properties and Fatigue Life Assessment of API X70 Pipeline Steel under the Effect of an Environment Containing Hydrogen. J Mech Sci Technol. 35(4): 1445–1455. Doi: 10.1007/s12206-021-0310-0.

F. G. Alabtah, E. Mahdi, and F. F. Eliyan. 2021. The Use of Fiber Reinforced Polymeric Composites in Pipelines: A Review. Composite Structures. 276: 114595. Doi: 10.1016/j.compstruct.2021.114595.

A. Saffar, A. Darvizeh, R. Ansari, A. Kazemi, and M. Alitavoli. 2021. Damage Analysis of Fiber–metal Laminate Patches as a Repair System for Surface Defects of Steel Pipelines. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 235(4): 868–879. Doi: 10.1177/1464420720980148.

A. Salve, R. Kulkarni, and A. Mache. 2016. A Review: Fiber Metal Laminates (FML’s) - Manufacturing, Test Methods and Numerical modeling. IJETS. 3(2): 71–84. Doi: 10.15282/ijets.6.2016.1.10.1060.

G. Franz, P. Vantomme, and M. H. Hassan. 2022. A Review on Drilling of Multilayer Fiber-Reinforced Polymer Composites and Aluminum Stacks: Optimization of Strategies for Improving the Drilling Performance of Aerospace Assemblies. Fibers. 10(9): 78. Doi: 10.3390/fib10090078.

R. D. F. S. Costa, R. C. M. Sales-Contini, F. J. G. Silva, N. Sebbe, and A. M. P. Jesus. 2023. A Critical Review on Fiber Metal Laminates (FML): From Manufacturing to Sustainable Processing. Metals. 13(4): 638. Doi: 10.3390/met13040638.

M. Mokhtari and A. Alavi Nia. 2016. The Application of CFRP to Strengthen Buried Steel Pipelines against Subsurface Explosion. Soil Dynamics and Earthquake Engineering. 87: 52–62. Doi: 10.1016/j.soildyn.2016.04.009.

Y. Zhang, Z. Liu, J. Xin, Y. Wang, C. Zhang, and Y. Zhang. 2021. The Attenuation Mechanism of CFRP Repaired Corroded Marine Pipelines based on Experiments and FEM. Thin-Walled Structures. 169: 108469. Doi: 10.1016/j.tws.2021.108469.

M. Elchalakani, A. Karrech, H. Basarir, M. F. Hassanein, and S. Fawzia. 2017. CFRP Strengthening and Rehabilitation of Corroded Steel Pipelines under Direct Indentation. Thin-Walled Structures. 119: 510–521. Doi: 10.1016/j.tws.2017.06.013.

B. Surowska, P. Jakubczak, and J. Bieniaś. 2017. Structure and Chemistry of Fiber Metal Laminates. Hybrid Polymer Composite Materials. 193–234. Doi: 10.1016/B978-0-08-100791-4.00008-2.

M. Droździel-Jurkiewicz and J. Bieniaś. 2022. Evaluation of Surface Treatment for Enhancing Adhesion at the Metal–Composite Interface in Fibre Metal-Laminates. Materials. 15(17): 6118. Doi: 10.3390/ma15176118.

Marcus, P and Oudar,J. 2022. Corrosion Mechanisms in Theory and Practice. New York: Marcel Dekker.

Y. Wang, X. Liu, H. Wang, and K. Vecchio. 2020. The Effect of Oxides on Fe/Al interfacial Reaction in Metal-Intermetallic Laminate (MIL) Composites. Journal of Alloys and Compounds. 845: 156268. Doi: 10.1016/j.jallcom.2020.156268.

Y. Saito, H. Watanabe, T. Yamada, K. Kanamori, and A. Yonezu. 2019. Interfacial Strength Evaluation of Oxide Films on Carbon Steel by Using the Laser Shock Adhesion Test. J. of Materi Eng and Perform. 28(8): 4762–4773. Doi: 10.1007/s11665-019-04246-1.

B. Fayzulla, M. Eroglu, and I. Qader. 2023. Multifunctional Properties of Metal Fibers Reinforced Polymer Composites ndash; A Review. MACS. Online First. Doi: 10.22075/macs.2023.29308.1461.

A. M. Atta, A. M. El-Saeed, G. M. El-Mahdy, and H. A. Al-Lohedan. 2015. Application of Magnetite Nano-hybrid Epoxy as Protective Marine Coatings for Steel. RSC Adv. 5(123): 101923–101931. Doi: 10.1039/C5RA20730D.

W. Sun, A. K. Tieu, Z. Jiang, H. Zhu, and C. Lu. 2004. Oxide Scales Growth of Low-carbon Steel at High Temperatures. Journal of Materials Processing Technology. 155–156: 1300–1306. Doi: 10.1016/j.jmatprotec.2004.04.172.

J. S. Sheasby, W. E. Boggs, and E. T. Turkdogan. 1984. Scale Growth on Steels at 1200°C: Rationale of Rate and Morphology. Metal Science. 18(3): 127–136. Doi: 10.1179/msc.1984.18.3.127.

F. S. Ahmed, M. A. El-Zomor, M. S. A. Ghazala, and R. N. Elshaer. 2022. Effect of Oxide Layers Formed by Thermal Oxidation on Mechanical Properties and NaCl-induced Hot Corrosion Behavior of TC21 Ti-alloy. Sci Rep. 12(1): 19265. Doi: 10.1038/s41598-022-23724-6.

M. O. Carvalho, L. A. Matlakhova, S. N. Monteiro, R. S. T. Manhães, and N. A. Palii. 2024. Analysis of Oxide Layer Formation During Oxidation of AISI 4140 Steel at 1000 °C over Exposure Time. Metals. 14(11): 1251. Doi: 10.3390/met14111251.

S. Y. Park, W. J. Choi, H. S. Choi, H. Kwon, and S. H. Kim. 2010. Recent Trends in Surface Treatment Technologies for Airframe Adhesive Bonding Processing: A Review (1995–2008). The Journal of Adhesion. 86,(2): 192–221. Doi: 10.1080/00218460903418345.

A. F. Harris and A. Beevers. 1999. The Effects of Grit-blasting on Surface Properties for Adhesion. International Journal of Adhesion and Adhesives. 19(6): 445–452. Doi: 10.1016/S0143-7496(98)00061-X.

G. Taguchi and S. Konishi. 1987. Taguchi Methods: Orthogonal Arrays and Linear Graphs; Tools for Quality Engineering. American Supplier Institute.

O. O. Agboola et al. 2020. Optimization of Heat Treatment Parameters of Medium Carbon Steel Quenched in Different Media using Taguchi Method and Grey Relational Analysis. Heliyon. 6(7). Doi: 10.1016/j.heliyon.2020.e04444.

Z. Zhang. 2023. The Characteristics and Reduction of Wustite. Iron Ores and Iron Oxides - New Perspectives, B. Kumar, Ed. IntechOpen. Doi: 10.5772/intechopen.1001051.

R. Nisticò. 2021. A Synthetic Guide Toward the Tailored Production of Magnetic Iron Oxide Nanoparticles. Boletín de la Sociedad Española de Cerámica y Vidrio. 60(1): 29–40. Doi: 10.1016/j.bsecv.2020.01.011.

S.-N. Lin, C.-C. Huang, M.-T. Wu, W.-L. Wang, and K.-C. Hsieh. 2017. Crucial Mechanism to the Eutectoid Transformation of Wüstite Scale on Low Carbon Steel. Doi: 10.20944/preprints201701.0130.v1.

Z. Li, C. Chanéac, G. Berger, S. Delaunay, A. Graff, and G. Lefèvre. 2019. Mechanism and Kinetics of Magnetite Oxidation under Hydrothermal Conditions. RSC Adv. 9(58): 33633–33642. Doi: 10.1039/C9RA03234G.

R. Y. Chen. 2003. Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen. Oxidation of Metals. 59(5/6): 433–468. Doi: 10.1023/A:1023685905159.

S. Nasrazadani and A. Raman. 1993. The Application of Infrared Spectroscopy to the Study of Rust Systems—II. Study of Cation Deficiency in Magnetite (Fe3O4) Produced during its Transformation to Maghemite (γ-Fe2O3) and Hematite (α-Fe2O3). Corrosion Science. 34(8): 1355–1365. Doi: 10.1016/0010-938X(93)90092-U.

H. Lepp. 1957. Stages in the Oxidation of Magnetite. American Mineralogist. 42(9–10): 679–681.

A. S. Canbolat, A. H. Bademlioglu, N. Arslanoglu, and O. Kaynakli. 2019. Performance Optimization of Absorption Refrigeration Systems using Taguchi, ANOVA and Grey Relational Analysis Methods. Journal of Cleaner Production. 229: 874–885. Doi: 10.1016/j.jclepro.2019.05.020.

D. J. Young. 2016. High Temperature Oxidation and Corrosion of Metals. Elsevier. Doi: 10.1016/c2014-0-00259-6.

S. A. Arreola-Villa, H. J. Vergara-Hernández, G. Solorio-Diáz, A. Pérez-Alvarado, O. Vázquez-Gómez, and G. M. Chávez-Campos. 2022. Kinetic Study of Oxide Growth at High Temperature in Low Carbon Steel. Metals. 12(1): 147. Doi: 10.3390/met12010147.

G. Bresson, J. Jumel, M. E. R. Shanahan, and P. Serin. 2012. Strength of Adhesively Bonded Joints under Mixed Axial and Shear Loading. International Journal of Adhesion and Adhesives. 35: 27–35. Doi: 10.1016/j.ijadhadh.2011.12.006.

A. Rudawska, I. Danczak, M. Müller, and P. Valasek. 2016. The Effect of Sandblasting on Surface Properties for Adhesion. International Journal of Adhesion and Adhesives. 70: 176–190. Doi: 10.1016/j.ijadhadh.2016.06.010.

O. A. Zambrano, J. J. Coronado, and S. A. Rodríguez. 2015. Mechanical Properties and Phases Determination of Low Carbon Steel Oxide Scales Formed at 1200°C in Air. Surface and Coatings Technology. 282: 155–162. Doi: 10.1016/j.surfcoat.2015.10.028.

T. Amano et al. 2006. Hardness of Oxide Scales on Fe-Si Alloys at Room- and High-Temperatures. MSF. 522–523. 469–476. Doi: 10.4028/www.scientific.net/MSF.522-523.469.

O.Barrau, C. Boher, C. Vergne, F. Rezai-Aria, and R. Gras. 2002. Investigations of Friction and Wear Mechanisms of Hot Forging Tool Steels. International Tooling Conference, France. 81–94.

Downloads

Published

2025-08-22

Issue

Section

Science and Engineering

How to Cite

TAGUCHI OPTIMIZATION OF X70 CARBON STEEL HEAT TREATMENT: A STUDY ON HARDNESS, THICKNESS AND PHASE ANALYSIS. (2025). Jurnal Teknologi (Sciences & Engineering), 87(5), 1007-1014. https://doi.org/10.11113/jurnalteknologi.v87.23474