On the Abelianization of a Torsion Free Crystallographic Group

Authors

  • Nor'ashiqin Mohd Idrus Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tg. Malim, Perak, Malaysia
  • Nor Haniza Sarmin Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Hazzirah Izzati Mat Hassim Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Rohaidah Masri Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tg. Malim, Perak, Malaysia

DOI:

https://doi.org/10.11113/jt.v70.2424

Keywords:

Torsion free, crystallographic group, Bieberbach group, abelianization

Abstract

A torsion free crystallographic group, which is also known as a Bieberbach group is a generalization of free abelian groups. It is an extension of a lattice group by a finite point group. The study of n-dimensional crystallographic group had been done by many researchers over a hundred years ago. A Bieberbach group has been characterized as a fundamental group of compact, connected, flat Riemannian manifolds. In this paper, we characterize Bieberbach groups with trivial center as exactly those with finite abelianizations.  The abelianization of a Bieberbach group is shown to be finite if the center of the group is trivial.

References

L. Auslander, M. Kuranishi. 1957. Annals of Mathematics (3). 65: 411.

M. Auslander, R. C. Lyndon. 1955. American Journal of Mathematics. 77: 929.

A. M. Basri, N. H. Sarmin, N. M. Mohd Ali, J. R. Beuerle. 2013. International Journal of Applied Mathematics and Statistics. 45(15): 150.

B. Eick, W. Nickel. 2002. Polycyclic-Computing with Polycyclic Groups. A GAP package.

D. R. Farkas. 1981. Journal of Mathematics. 11: 511.

H. Hiller. 1986. The American Mathematical Monthly. 93: 765.

T. W. Hungerford. 1974. Graduate Texts in Mathematics: Algebra. New York: Springer-Verlag.

W. Malfait, A. Szczepanski. 2003. Compositio Mathematica. 135: 89.

B. Putryez. 2007. Journal of Group Theory. 10: 401.

J. J. Rotman. 1995. An Introduction to The Theory of Groups. 4th ed. New York: Springer-Verlag.

D. Segal. 1983. Polycyclic Groups. Cambridge: Cambridge University Press.

A. Szczepanski. 1996. Bull. Belg. Math. Soc. (3). 3: 585.

Downloads

Published

2014-08-27

Issue

Section

Science and Engineering

How to Cite

On the Abelianization of a Torsion Free Crystallographic Group. (2014). Jurnal Teknologi (Sciences & Engineering), 70(1). https://doi.org/10.11113/jt.v70.2424