Modeling of Dielectric Relaxation for Lossy Materials at Microwave Frequencies using Polynomial Approaches

Authors

  • K. Y. You Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru
  • Z. Abbas Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
  • M. F. A. Malek Universiti Malaysia Perlis, 02600, UNIMAP Perlis
  • E. M. Cheng Universiti Malaysia Perlis, 02600, UNIMAP Perlis
  • H. K. Mun Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru

DOI:

https://doi.org/10.11113/jt.v58.2544

Keywords:

Relative permittivity, dielectric model, polynomial approaches

Abstract

This paper reviews the dielectric modeling techniques and features of various dielectric models. In fact, many of the dielectric models have a polynomial characteristic, thus polynomial fitting is proposed in order to estimate the parameters in the dielectric model based on measured data. The coefficients of the polynomial equation were optimized with the measured data using HP 85070 B dielectric probe. Finally, the parameters in the dielectric models can be easily determined, based on the estimated polynomial coefficients. The parameters of the dielectric model were successfully estimated and compared with parameter values in the literature.

References

Alvarez, F., Alegria A., and Colmenero, J. 1991. Relationship between the time-domain Kohlrausch–Williams-Watts and frequency-domain and Havriliak-Negami relaxation functions. Physical Review B. 44: 7306–7312.

Chelkowski, A. 1980. Dielectric physics. New York: Elsevier scientific publishing company.

Coelho, R. 1979. Physics of dielectrics for the engineer. New York: Elsevier scientific publishing company.

Cole, R. H. 1955. On the analysis of dielectric relaxation measurements. J. Chem. Phy. 23: 493–499.

Davidson, D. W. and Cole, R.H. 1951. Dielectric relaxation in Glycerol, Propylene Glycol and n-Propanol. J. Chem. Phys. 19: 1484–1490.

Debye, P. 1945. Polar Molecules. New York: Dover.

Grant, J. P., Clarke, R. N., Symm, G. T., and Spyrou, N. M. 1989. A critical study of the open-ended coaxial line sensor technique for RF and microwave complex permittivity measurements. J. Phys. E: Sci. Instrum. 22: 757–770.

Hasted, J. 1973. Aqueous dielectrics. London: Chapman & Hall.

Havriliak, S., and Negami, S. 1966. A complex plane analysis of

ï¡

-dispersions in some polymer system. Journal of Polymer Science, Part C. 14: 99–103.

Jonscher, A. K. 1983. Dielectric relaxation in solids. London: Chelsea Dielectrics Press.

Jordan, B. P., Sheppard, R. J., and Szwarnowski, S. 1978. The dielectric properties of formamide, ethanediol and methanol. J. Phys. D: Appl. Phys. 11: 695–702.

Kraszewski, A., Kulinski, S., Matuzewski, M. 1976. Dielectric properties and a model of biphase water suspension at 9.45 GHz. J. Appl. Phys. 47(4): 1275–1277.

Kuang, W., and Nelson, S. O. 1997. Dielectric relaxation characteristics of fresh fruits and vegetables from 3 to 20 GHz. J. Microwave Power. 32(2):114–122.

Kaatze U. 1989. Complex permittivity of water as a function of frequency and temperature. J. Chem. Eng. Data. 34: 371–374.

Mironov, V. L., Dobson, M. C., Kaupp, V. H., Komarov, S. A., and Kleshchenko, V. N. 2004. Generalized refractive mixing dielectric model for moist soils. IEEE Transactions on Geoscience and Remote Sensing. 42(4): 773–785.

Mudgett, R. E., Goldblith, S. A., Wang, D. I. C., and Westphal, W. B. 1977. Prediction of dielectric properties in solid foods of high moisture content at ultrahigh and microwave frequencies. J. Food. Proc. Pres: 119–151.

Nyfors, E., and Vainikainen, P. 1989. Industrial microwave sensors. Norwood, MA. Artech House, Inc.

Nyshadham, A., Sibbald, C. L., and Stuchly, S. S. 1992. Permittivity measurements using open-ended sensors and reference liquid calibration – An uncertainty analysis. IEEE Trans. Microwave Theory Tech. 40: 305–314.

Robert, P. 1988. Electric and magnetic properties of materials. Norwood: Artech House.

Prion, A. 1992. Dielectric properties of heterogeneous materials. PIER New York: Elsevier. 6: 40.

Thuery, J. 1992. Microwaves: industrial, scientific, and medical applications. Norwood, MA: Artech House.

Thrane, L., Jacobsen, R., Uhd Jepsen, P. & Keiding, S. 1995. THz reflection spectroscopy of liquid water. Chemical Physics Letters. 240: 330–333.

You, K. Y., Abbas, Z., Kaida, K. and Mohamad Zaki, A. R. 2010. Improved dielectric model for polyvinyl alcohol-water hydrogel at microwave frequencies. American Journal of Applied Sciences. 7: 270–276.

Downloads

Published

2012-06-15

How to Cite

Modeling of Dielectric Relaxation for Lossy Materials at Microwave Frequencies using Polynomial Approaches. (2012). Jurnal Teknologi, 58(1). https://doi.org/10.11113/jt.v58.2544