Densification and Mechanical Properties of Y-TZP/25 wt. % ZrB2 Composite

Authors

  • E. M. Mahdi Mahdi
  • S. Ramesh Centre of Advanced Manufacturing & Material Processing (AMMP), Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • M. Amiriyan Ceramics Technology Laboratory, University Tenaga Nasional, Kajang, Selangor, Malaysia
  • R. Tolouei Ceramics Technology Laboratory, University Tenaga Nasional, Kajang, Selangor, Malaysia
  • S. Meenaloshini Ceramics Technology Laboratory, University Tenaga Nasional, Kajang, Selangor, Malaysia
  • W. D. Teng Ceramics Technology Group, SIRIM Berhad, 40911 Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v59.2589

Keywords:

Sintering, mechanical properties, Y-TZP composite, zirconium diboride

Abstract

Over the last three decades, most of the efforts in mechanics of materials science have been focused to develop tougher and stronger ceramics via cost effective processing techniques. In the present work, 3 mol % Yttria-stabilized tetragonal zirconia (3Y-TZP) composites with 25 wt. % of ZrB2 was prepared by pressureless sintering method in argon atmosphere over the temperature range of 1350-1550°C for one hour holding time. The influences of zirconium diboride addition in the zirconia matrix, as well as the sintering temperature, on the densification, phase stability and electrical properties of sintered samples have been studied. The results revealed that electrical resistivity values is very low (high electrical conductivity) when 25 wt. % of ZrB2 is incorporated to pure 3Y-TZP.

References

R. Stevens. 1986. Magnesium Electron Ltd. UK. 28

L. Gakovic. 2007. U. S. Patent 7. 214,046.

W. Konig, D. F. Dauw, G. Levy and U. Panten. 1988. Annals of the CIRP. 37: 623.

G. Anne, S. Put, K. Vanmeensel, D. Jiang, J. Vleugels and O. Van Der Biest. 2005. J. Eur. Ceram. Soc. 25: 55.

J. Vleugels and O. Van Der Biest. 1999. J. Am. Ceram. Soc. 82: 2717.

B. Basu, J. Vleugels and O. Van Der Biest. 2002. J. Alloys Compd. 334: 200.

B. Basu, J. Vleugels and O. Van Der Biest. 2002. Key Eng. Mater. 1177.

Standard Test Method for Microindentation Hardness of Materials. 1999. ASTM Standard E384-99.

ASTM E1876-97. 1998. STANDARD Test Method for Dynamic Young’s Modulus, Shear Modulus and Poisson’s Ratio by Impulse Excitation of Vibration, Annual Book of ASTM Standards.

Fine ceramics (advanced ceramics, advanced technical ceramics) – Test Method for Hardness of Monoclinic Ceramics at Room Temperature. ISO Standard 14705, 2000

K. Niihara, H. Morena and D. P. H. Hasselman. 1982. J. Mater. Sci. Lett. 1: 13.

N. Gupta, P. Mullick and B. Basu. 2004. J. Alloys Compd. 379: 228.

S. D. Bakshi, B. Basu and S. K. Mishra. 2006. Composites: Part A. 37. 2128.

F. Meschk, N. Claussan, G. De Portu and J. Rodel. 1997. J. Eur. Ceram. Soc. 17: 843.

Downloads

Published

2012-10-15

How to Cite

Densification and Mechanical Properties of Y-TZP/25 wt. % ZrB2 Composite. (2012). Jurnal Teknologi (Sciences & Engineering), 59(2). https://doi.org/10.11113/jt.v59.2589