Effects of Molding Parameters on MIM’s Material Distribution using Numerical Simulation Method

Authors

  • Mohd Fazuri Abdullah Dept. of Mechanical and Material Engineering, Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • Abu Bakar Sulong Dept. of Mechanical and Material Engineering, Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • Norhamidi Muhamad Dept. of Mechanical and Material Engineering, Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • Muhamad Afkar Husin Dept. of Mechanical and Material Engineering, Universiti Kebangsaan Malaysia, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v59.2593

Keywords:

Design of experiment, numerical simulation, metal injection molding (MIM), physical properties

Abstract

In the competitive world in the global market, manufacturing industry is striving to produce products at high quality, shorter time and low cost. This can be achieved through proper design activities, with assist of finite element analysis (FEA) and computer aided design (CAD). The objective of this project is to study the effect of the molding parameters on the physical characteristics of surgery tool via MIM based on design of experiment (Taguchi method). This numerical results show the behavior of feedstock entering the mould during injection process and the possibility defects that might occur. The quality of the injected product depends on the selection of the feedstock as well as the parameters for injection molding such as injection temperature (A), mold temperature (B), flow rate (C) and injection pressure (D). From the analysis of Taguchi, the optimal levels of process parameters for the shortest filling time is [A3(200ºC), B1(80ºC), C3(20 cm3/s), D3(260 MPa)]. Set of optimal parameters for the smallest shrinkage percentage difference is [A1(180ºC), B3(100ºC), C3(20 cm3/s), D2(255 MPa)]. The most influence injection molding parameters are injection temperature and injection pressure. Follow by the flow rate.

References

Jamaludin, K. R., Muhamad, N., Ab. Rahman, M. N., M. Amin, S. Y., Ismail, M. H., Murtadhahadi. 2008. Injection Molding Parameter Optimization for Minimize the Defect of Green Part in Metal Injection Molding. Journal-The Institution of Engineers, Malaysia. 69(2):92–99.

Liu, Z. Y., Loh, N. H., Tor, S. B., Khor, K. A. 2003. Characteristic of Powder Injection Molding Feedstock. Materials Characterization. 49: 313–320.

Bilovol, V. V., Kowalsky, L., Dusczyk, J., Katgerman, L. 2001. Comparative study of Different Simulation Programs for Modeling of Powder Injection Moulding. In Proceedings of the European Congress on Powder Metallurgy. 44(3): 129–134.

Heldele, R., Schulz, M., Kauzlaric, D., Korvink, J. G., Haubelt, J. 2006. Micro Powder Injection Molding: Process Characterization and Modeling. Microsyst Technol. 12: 941–946.

Bakan, H. I., Jumadi, Y., Messer, P. F., Davies, H. A. & Ellis, B. 1998. Study of Processing Parameter for MIM Feedstock Based on Composite PEG, PMMA binder. Powder Metallurgy. 4: 289–291.

German, R. M. & Bose, A. 1997. Injection Molding of Metals and Ceramics. Metal Powder Industri (MPIF). New Jersey.

Zheng, Z. X., Xia, W., Zhou, Z. Y., Zhu Q. L. 2008. Numerical Simulation of Tungsten Alloy in Powder Injection Molding Process. Trans. Nonferrous Met. Soc. China. 18: 1209–1215.

Bergnic, B., Berzocnik, M., Kampus, Z., Sustarsic, B. 2009. A Numerical Simulation of Metal Injection Molding. Meterials and Technology. 43: 43–48.

Mohamad, N. H., Muhamad, N., Ariffin, A. K., Ruzi, M., Jamaludin, K. R. Sufizar, A. 2011. Injection Molding Parameter Optimization of Titanium Alloy Powder Mix with Palm Stearin and Polyethylene for Multiple Performance Using Grey Relational Analysis. Journal of Applied Sciences. 11(10): 1833–1833.

Iriany, Muhamad, N., Sahari, J. and Arifin, A. K. 2001. Stability of Metal Injection Molding Feedstock Containing Palm Oil. Journal of the Institute of Materials Malaysia. 2: 71–83.

Bilolov, V. V., Kowalski, L., Duszcyk, J., Katgerman, L. 2006. The Effect of Constitutive Description of PIM Feedstock Viscosity in Numerical Analysis of the Powder Injection Molding Process. Journal of Materials Processing Technology. 78: 194–199.

Huang, B., Liang, S. & Qu, X. 2003. The Rheology of Metal Injection Molding. Journal of Materials Processing Technology. 137: 132–137.

Binet, C., Heaney, D. F., Spina, R., Tricarico, L. 2005. Experimental and Numerical Analysis of Metal Injection Molded Products. Journal of Materials Processing Technology. 164(165): 1160–1166.

Quinard, C., Barriere, T., Gelin, J. C. 2009. Development and Property Identification of 316L Stainless Steel Feedstock for PIM and μPIM. Powder Technology. 190: 123–128.

Berginc, B., Kampuc, Z., Sustarsic, B. 2006. The Use of the Taguchi Approach to Determine the Influence of Injection-moulding Parameters on the Properties of Green Parts. Journal of Achievements in Materials and Manufacturing Engineering. 15(1–2).

Downloads

Published

2012-10-15

How to Cite

Effects of Molding Parameters on MIM’s Material Distribution using Numerical Simulation Method. (2012). Jurnal Teknologi (Sciences & Engineering), 59(2). https://doi.org/10.11113/jt.v59.2593