A Simulation Study On Ridge Regression Estimators In The Presence Of Outliers And Multicollinearity
DOI:
https://doi.org/10.11113/jt.v47.261Abstract
Satu kajian simulasi telah dijalankan untuk memeriksa keteguhan beberapa penganggar ke atas model linear regresi berganda dengan gabungan masalah multikolinearan dan ralat tak normal. Prestasi keenam–enam penganggar tersebut, seperti penganggar Kuasadua Terkecil Biasa (LS), Regresi ‘Ridge’ (RIDGE), Nilai Mutlak Terkecil ‘Ridge’ (RLAV), ‘Ridge’ Berpemberat (WRID), MM dan Regresi Teguh ‘Ridge’ berasaskan penganggar MM (RMM) dibandingkan. Penganggar RMM adalah pengubahsuaian penganggar Regresi ‘Ridge’ dengan menggabungkan penganggar teguh MM. Bukti empirik menunjukkan RMM adalah penganggar terbaik di kalangan enam penganggar yang dikaji bagi gabungan taburan ganguan dan paras multikolinearan. Kata kunci: Multikolinearan; titik terpencil; regresi ‘ridge’; regresi teguh A simulation study is used to examine the robustness of six estimators on a multiple linear regression model with combined problems of multicollinearity and non–normal errors. The performance of the six estimators, namely the Ordinary Least Squares (LS), Ridge Regression (RIDGE), Ridge Least Absolute Value (RLAV), Weighted Ridge (WRID), MM and a robust ridge regression estimator based on MM estimator (RMM) are compared. The RMM is a modification of the Ridge Regression (RIDGE) by incorporating robust MM estimator. The empirical evidence shows that RMM is the best among the six estimators for many combinations of disturbance distribution and degree of multicollinearity. Key words: Multicollinearity; outliers; ridge regression; robust regressionDownloads
Published
2012-01-20
Issue
Section
Science and Engineering
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.
How to Cite
A Simulation Study On Ridge Regression Estimators In The Presence Of Outliers And Multicollinearity. (2012). Jurnal Teknologi (Sciences & Engineering), 47(1), 59–74. https://doi.org/10.11113/jt.v47.261