PI Adaptive Neuro-Fuzzy and Receding Horizon Position Control for Intelligent Pneumatic Actuator

Authors

  • Omer Faris Hikmat Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ahmad 'Athif Mohd Faudzi Centre for Artificial Intelligence and Robotics (CAIRO), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohamed Omer Elnimair Alhsour Mining, Khartoum, Sudan
  • Khairuddin Osman Department of Industrial Electronics, Faculty of Electrical and Electronics, Universiti Teknikal Malaysia, Melaka, Malaysia

DOI:

https://doi.org/10.11113/jt.v67.2759

Keywords:

Intelligent pneumatic actuator, position control, neuro-fuzzy, receding horizon control

Abstract

Pneumatic systems are widely used in automation industries and in the field of automatic control. Intelligent Pneumatic Actuators (IPA) is a new generation of actuators designed and developed for research and development (R&D) purposes. This work proposes two control approaches, Proportional Integral Adaptive Neuro-Fuzzy (PI-ANFIS) controller and Receding Horizon Controller (RHC), for IPA position control. The design steps of the controllers are presented. MATLAB/SIMULINK is used as a tool to implement the controllers. The design is based on a position identification model of the IPA. The simulation results are analyzed and compared with previous work on the IPA to illustrate the performance of the proposed controllers. The comparison shows a significant improvement in IPA position control after using the new controllers.

References

H. I. Ali, S. B. B. M. Noor, S. M. Bashi, M. H. Marhaban. 2009. A Review of Pneumatic Actuators (Modeling and Control). Australian Journal of Basic and Applied Sciences. 2: 440–454.

A. A. M. Faudzi, K. Suzumori, S. Wakimoto. 2009. Development of an Intelligent Pneumatic Cylinder for Distributed Physical Human-Machine Interaction. Advanced Robotics. 23: 203–225.

Khairuddin Osman. 2012. Member, IEEE,Ahmad 'Athif Mohd Faudzi, Member, IEEE, M.F. Rahmat, Nu'man Din Mustafa, M. Asyraf Azman, Koichi Suzumori, Member, IEEE. System Identification Model for an Intelligent Pneumatic Actuator (IPA) System. IROS 2012

A. A. M. Faudzi, K. Suzumori, S. Wakimoto. 2010. Development of an Intelligent Chair Tool System Applying New Intelligent Pneumatic Actuators. Advanced Robotics. 24: 1503–1528.

A. A. M. Faudzi, K. Suzumori. 2010. Programmable System on Chip Distributed Communication and Control Approach for Human Adaptive Mechanical System. Journal of Computer Science. 6(8): 852–861.

A. A. M. Faudzi. 2010. Development of Intelligent Pneumatic Actuators and Their Applications to Physical Human-Mechine Interaction System. Ph.D. thesis, The Graduate School of Natural Science and Technology, Okayama University, Japan.

A. A. M. Faudzi. 2012. Member. Khairuddin Osman, M.F. Rahmat, Nu'man Din Mustafa, M. Asyraf Azman, Koichi Suzumori. 2012. Nonlinear Mathematical Model of an Intelligent Pneumatic Actuator (IPA) Systems: Position and Force Controls, AIM 2012.

A. A. M. Faudzi, Khairuddin bin Osman, M. F. Rahmat, Nu’man Din Mustafa, M. Asyraf Azman, Koichi Suzumori. 2012. Controller Design for Simulation Control of Intelligent Pneumatic Actuators (IPA) System. Procedia Engineering. 41: 593–599.

J-SR, Jang. 1993. ANFIS: Adaptive-Network-based Fuzzy Inference System. Systems, Man and Cybernetics, IEEE Transactions on. 23(3): 665–685.

Tahour, H. Ahmed, A. Hamza, A. A. Ghani. 2007. Adaptive Neuro-Fuzzy Controller of Switched Reluctance Motor. Serbian Journal of Electrical Engineering. 4(1): 23–34.

Denal, A. Mouloud, P. Frank, Z. Abdelhafid. 2004. ANFIS Based Modelling and Control of Non-linear Systems: A Tutorial. Systems, Man and Cybernetics, 2004 IEEE International Conference vol. 4.

V. A. Constantin. 1995. Fuzzy Logic and Neuro-Fuzzy Applications Explained. Englewood Cliffs, Prentice-Hall.

C. T. Lin, C. S. G. Lee. 1996. Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Upper Saddle River, Prentice-Hall.

N. K. Kim. 1999. HyFIS Adaptive Neuro-fuzzy Inference Systems and Their Application to Nonlinear Dynamical Systems. Neural Networks. 12(9): 1301–19.

D. D. Popa, Aurelian Craciunescu, Liviu Kreindler. 2008. A PI-Fuzzy Controller Designated for Industrial Motor Control Applications. Industrial Electronics. ISIE 2008. IEEE International Symposium. IEEE.

C. E Garcia, D. M. Prett, M. Morari. 1989. Model Predictive Control: Theory and Practice-a Survey. Automatica. 25(3): 335–348.

L. Wang. 2009. Model Predictive Control System Design and Implementation Using MATLAB. Springer books. 1: 40.

Downloads

Published

2014-03-15

How to Cite

PI Adaptive Neuro-Fuzzy and Receding Horizon Position Control for Intelligent Pneumatic Actuator. (2014). Jurnal Teknologi (Sciences & Engineering), 67(3). https://doi.org/10.11113/jt.v67.2759