Feature Analysis of Numerical Calculated Data from Sweep Frequency Analysis (SFRA) Traces Using Self Organizing Maps

Authors

  • Z. H. Bohari Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • S. Ab Ghani Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • M. F. Baharom Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • M. N. M. Nasir Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • M. H. Jali Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Y. H. Md Thayoob College of Graduate Studies, 4th Floor, Admin Building, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor Darul Ehsan, Malaysia

DOI:

https://doi.org/10.11113/jt.v67.2762

Keywords:

Self Organizing Maps (SOM), power transformer, classification, SFRA

Abstract

This paper presents a comprehensive investigation of the Self Organizing Map (SOM) classification process of good and defective power distribution transformers. Three main features were extracted from the numerical calculation method of the Sweep Frequency Response Analysis (SFRA) signals acquired from the transformers. These features are the input vectors for the SOM classification. Analysis of the results has shown the capability of the features and the SOM classification method to differentiate between good and defective transformers.

References

S. V. Verdu, M. O. Garcia, C. Senabre, A. G. Marin and F. J. G. Franco. 2006. Classification, Filtering and Identification of Electrical Customer Load Patterns Through the Use of Self Organizing Maps. IEEE Transactions on Power System. 21: 1672–1682.

C. Olaru and L. Wehenkel. 1999. Data Mining Tutorial. CAP Tutorial, July 1999. 19–25.

J. Vesanto, J. Himberg, E. Alhoniemi and J. Parhangkas. 1999. Self-organizing Map in Matlab: the SOM Toolbox. Proceedings of the Matlab DSP Conference , Espoo, Finland. 35–40.

A. Kraetge, M. Kruger, J. L. Velasquez, H. Viljeon and A. Dierks. 2009. Aspects of the Practical Application of Sweep Frequency Response Analysis (SFRA) on Power Transformers. CIGRE 6th Southern Africa Regional Conference. 1–10.

Omicron F. R. 2009. Analyzer User Manual, Sweep Frequency Response Analyzer for Power Transformer Winding Diagnosis. Omicron Electronics.

G. M. Kennedy, A. J. McGrail and J. A. Lapworth. 2007. Using Cross-Correlation Coefficient to Analyze Sweep Frequency Response Analysis (SFRA) Traces. IEEE PES Power Africa 2007 Conference and Exposition, Johannesburg, South Africa. 1–6.

P. M. Nirgude. D. Ashokraju, A. D. Rajkumar and B. P. Singh. 2008. Application of Numerical Evaluation Techniques for interpreting Frequency Response Measurements in Power Transformers. IET Science, Measurement and Technology. 2(5): 275–285.

M. De Nigris , R. Passaglia, R. Berti L. Bergonzi, R. Maggi. 2004. Application Of Modern Techniques For The Condition Assessment Of Power Transformers. A2-207: 1–12

SFRA Resource Center. 2003. SFRA and Hoop Buckling. Doble Engineering Paper. 1–12.

Downloads

Published

2014-03-15

How to Cite

Feature Analysis of Numerical Calculated Data from Sweep Frequency Analysis (SFRA) Traces Using Self Organizing Maps. (2014). Jurnal Teknologi (Sciences & Engineering), 67(3). https://doi.org/10.11113/jt.v67.2762