Using Pyroelectric Sensors to Detect Continuous Infrared Radiation
DOI:
https://doi.org/10.11113/jt.v67.2764Keywords:
Pyroelectric detectors, thermo-electric cooler, temperature changes, infrared radiationAbstract
This paper focuses on an optimized method for detecting continuous infrared rays make use of Pyroelectric devices. Now, Pyroelectric devices are usually very sensitive to changes in infrared radiation in the presence of an object when transfers or radiation is connected or disconnected. In this new approach, the thermo-electric cooler is employed to active temperature sensors instead of conventional modulation. They use mechanical parts, which are complex and un-reliable. The most of the sensor consists of a number of important restrictions, which are expected to be eliminated by a new method in this study. To simulate the thermal and electrical behavior of the detector, the equivalent electrical circuit is needed that will be proposed.The practical results of Pyroelectric sensor are sent to a computer by a digital oscilloscope, and then they are monitored and analyzed. After that, the model is simulated with MATLAB software. Finally, practical and theoretical results compared with each other and a good agreement of them is shown and confirms the validity of the model.
References
A. D. Stuart. 1993. Some Applications of Infrared Optical Sensing. Sens. Actuators B. 11(1–3): 185–193.
H. Schneider, H. C. Liu. 2007. Quantum Well Infrared Photodetectors: Physics and Applications. Springer-Verlag, Berlin, Heidelberg. 175–199.
K. Tomita, D. Takamuro, K. Sawada, M. Ishida. 2002. Electron Emission Type Infrared Imaging Sensor Using Ferroelectric Thin Plate. Sens. Actuators. 97–98: 147–152.
C. Ni, Qi Li, L.Z. Xia. 2008. A Novel Method of Infrared Image Denoising and Edge Enhancement. Signal Process. 88(6): 1606–1614.
G. Gangale, A. J. Prata, L. Clarisse. 2010. The Infrared Spectral Signature of Volcanic Ash Determined from High-spectral Resolution Satellite Measurements. Remote Sens. Environ. 114(2): 414–425.
V. S. Kouzmin, A. E. Rubovsky. 1996. IR Horizon Sensor Based on Multielement Pyro-electric Detector. Proc. Acquis. Track. Point. 2739 411–417.
A. Rogalski. 2002. Comparison of photon and thermal detector performance. In: M. Henini, M. Razeghi (Eds.). Handbook of Infrared Detection Technologies. Oxford. 6–26.
M. Okuyama, Y. Togami, Y. Hamakawa, M. Kimata, S. Uematsu. 1989. Pyroelectric Infrared CCD Image Sensor using LiTaO. Sens. Actuators A. 16(3): 263–271.3
W. Astheimer, F. Schwarz. 1968. Thermal Imaging Using Pyroelectric Detectors. Appl. Optics. 7(9): 1687–1695.
R. W. Whatmore, Qi Zhang, C. P. Shaw, R. A. Dorey, J. R. Alcock. 2007. Pyroelectric Ceram-ics and Thin ï¬lms for Applications in Uncooled Infra-red Sensor Arrays. Phys. Scripta. 6(T129): 6–11.
M. H. Lee, R. Guo, A. S. Bhalla. 1998. Pyroelectric Sensors. J. Electroceram. 2(4): 229–242.
J. Wilson, J. F. B. Hawkes. 1998. Wilson Optoelectronics: An Introduction. Prentice Hall.
D. Akai, K. Hirabayashi, M. Yokawa, K. Sawada, Y. Taniguchi, S. Murashige, N. Nakayama, I. T. Yamada, K. Murakami, M. Ishida. 2006. Pyroelectric p.infrared Sensors with Fast Response Time and High Sensitivity Using Epitaxial Pb(Zr, Ti)O Films on Epitaxial γ- Al2O3 /Si substrates. Sens. Actuators A. 130–131: 111–115.
I. Takeo, T. Shozo. 1999. Pyroelectric Detectors for Space Applications. Soc. Infrared Sci. Technol. 9(1): 34–40.
G. Rullman, S. Baliga, A. P. Doctor. 1994. Space-qualiï¬ed Pyroelectric Detectors, SPIE Photon. Space Environ. 2215: 39–45.
M. Nakamoto, N. Ichinose, N. Iwase, Y. Yamashita. 2002. Pyroelectric Infrared Sensor Using Modiï¬ed PbTiO Ceramics. Trans. IEE Jpn. 122-E (11): 523–530.
R. Takayama, Y. Tomita, J. Asayama, K. Nomura, H. Ogawa. 1989. Pyroelectric Infrared 3 Array Sensors Made of c-axis-oriented La-Modiï¬ed PbTiO Thin Films. Sens. Actuators A. 22(1–3): 508–512.
K. Nakamura, T. Ishigaki, A. Kaneko, S. Takahashi, J. Nishida, Y. Wakabayashi, H. Nakamura. 1989. Pyroelectric Infrared Detector for Precision Earth Sensor. Int. J. Infrared Millim. Waves. 10(8): 907–930.
R. Blockley, W. Shyy. 2010. Encyclopedia of Aerospace Engineering, Dynamics and Control. JohnWiley&Sons, Barcelona. 3200.
J. C. Lagarias, J. A. Reeds, M. H. Wright, P. E. Wright. 1998. Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions. SIAM J. Optimization. (1)112–147.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.