Design of Dual Band Antenna for WLAN Application

Authors

  • M. Md. Shukor Center for Telecommunication Research and Innovation, FKEKK, UniversitiTeknikal Malaysia Melaka (UTeM),Melaka, Malaysia
  • M. Z. A. Abd. Aziz Center for Telecommunication Research and Innovation, FKEKK, UniversitiTeknikal Malaysia Melaka (UTeM),Melaka, Malaysia
  • B. H. Ahmad Center for Telecommunication Research and Innovation, FKEKK, UniversitiTeknikal Malaysia Melaka (UTeM),Melaka, Malaysia
  • M. K. Suaidi Center for Telecommunication Research and Innovation, FKEKK, UniversitiTeknikal Malaysia Melaka (UTeM),Melaka, Malaysia
  • M. A. Othman Center for Telecommunication Research and Innovation, FKEKK, UniversitiTeknikal Malaysia Melaka (UTeM),Melaka, Malaysia

DOI:

https://doi.org/10.11113/jt.v67.2767

Keywords:

Coplanar waveguide (CPW), dual band, gain, planar, radiating structure, return loss

Abstract

This paper presents the antenna designed with radiating structure of 3.5 for dual band applications. This antenna is designed and simulated by using CST Studio Suite software at 2.4 GHz and 5.2 GHz based on standard IEEE 802.11a (5.15 GHz-5.35 GHz) and IEEE 802.11b (2.4 GHz-2.48 GHz) frequency bands. The radiating structure 5 and 3 are designed to radiated at frequency 2.4 GHz and 5.2 GHz respectively. Then, both structures are combined to achieve dual band resonant frequencies. The techniques that have been used to achieve dual band resonant are by designing the 3.5 shaped by using planar and coplanar waveguide (CPW) structures. There are three designs of dual band antenna which are Design A, Design B and Design C. The optimum return loss for 2.4 GHz and 5.2 GHz frequency response are -16.44 dB and -18.78 dB respectively achieved by Design C. The changes on the position of radiating structure 3 will effects the frequency response, return loss and gain of the antenna.

References

Li, R., Wu, T. and Tentzeris, M. 2008. A Dual Band Unidirectional Coplanarantenna for 2.4-5-GHz Wireless Applications. Proc. Microwave Conference, 2008. APMC 2008, Asia Pacific. 1–4.

Papantonis, S. and Episkopou, E. 2011. Compact Dual Band Printed 2.5-shaped Antenna for WLAN Applications. Proc. Machine Copy for Proofreading. 1–13.

Park, S. Y., Oh, S. J., Park, J. K. and Kim, J. S. 2009. Dual Band Antenna for WLAN/UWB Applications. Proc. Microwave Conference, 2009. APMC 2009, Asia Pacific. 2707–2710.

Karakoussis, G. P., Kostaridis, A. I., Biniaris, C. G., Kaklamani, D. I. 2003. Adual-band inverted-F Antenna Printed on a PC Card for the ISM and UNNI Bands. Proc. Wireless Communications and Networking, 2003. IEEE. 1: 88–92.

Lan, K., Chaudhuri, S. K., Safavi-Naeini, S. 2003. A Compact Wide-Dualband Antenna for Bluetooth and Wireless LAN Applications. Proc. Antennas and Propagation Society International Symposium, 2003. IEEE. 2: 926–929.

Vij, V. 2010. Wireless Communication. New Delhi: Laxmi Publications, Pvt. Ltd.

Mukandatimana, M. C., Denidni, T. A., Talbi, L. 2004. Design of a New Dualband CPW-fed Slot Antenna for ISM Applications. Proc. Vehicular Technology Conference, 2004. VTC 2004-Spring. 2004 IEEE 59th. 1: 6–9.

Pan, C. Y., Huang, C. H., Horng, T. S. 2004. A Novel Printed G-shaped Monopole Antenna for dual-band WLAN Applications. Proc. Antennas and Propagation Society International Symposium, 2004. IEEE. 3: 3099–3102.

Huang, Y., Boyle, K. 2008. Antennas from Theory to Practice. United Kingdom: John Wiley & Sons, Ltd.

Pozar, D. M. 1982. Microwave EngineeringY. Yorozu, M. Hirano, K. Oka, and Y. Tagawa. 1982. Electron Spectroscopy Studies on Magneto-optical Media and Plastic Substrate Interface. IEEE Transl. J. Magn. Japan. 2: 740–741.

M. Z. A. A. Aziz, M. Shukor, M. K. Suaidi, and A. Salleh. 2012. Design a 3.5 Antenna for Dual Band Application. International Journal of Emerging Technology and Advanced Engineering. 2(9): 486–492.

M. Z. A. A. Aziz, M. Shukor, M. K. Suaidi. 2013. Design 3.5 Antenna using Planar Technique for Dual Band Applications. 6th International Conference on Information Technology (ICIT’13). Jordan. 8-10 May 2013.

M. Z. A. Abd. Aziz, M. Md. Shukor, M. K. Suaidi, B. H. Ahmad, M. A. Othman, N. Hasan. 2013. Design a 3.5 Antenna using Coplanar Waveguide (CPW) for Dual Band Applications. 13th Conference on Microwave Techniques COMITE 2013 IEEE. April 17-18. 31–35.

Majid, H. A., Rahim, M. K. A., Hamid, M. R., Ismail, M. F., Malek, F. 2012. Frequency Reconfigurable Wide to Narrow Band Monopole With Slotted Ground Plane Antenna. Journal of Electromagnetic Waves and Applications. 26(11–12): 1460–1469.

Khalily, M., Rahim, M. K. A., Kishk, A. A., Danesh, S. 2013. Wideband P-Shaped dielectric resonator antenna. Radio Engineering. 22(1): 281–285.

Khalily, M., Rahim, M. K. A., Murad, N. A., Samsuri, N. A., Kishk, A. A. 2013. Rectangular Ring-shaped Dielectric Resonator Antenna for Dual and Wideband Frequency. Microwave and Optical Technology Letters. 55(5): 1077–1081.

CST microwave studio - https://www.cst.com/.

Downloads

Published

2014-03-15

How to Cite

Design of Dual Band Antenna for WLAN Application. (2014). Jurnal Teknologi, 67(3). https://doi.org/10.11113/jt.v67.2767