Optimization of Oil Palm Fronds Pretreatment Using Ionic Liquid for Levulinic Acid Production

Authors

  • Nur Aainaa Syahirah Ramli Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nor Aishah Saidina Amin Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ismail Ware Institute of Bioproduct Development (IBD), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v71.2815

Keywords:

Lignin degradation, oil palm fronds, ionic liquid, optimization, levulinic acid production

Abstract

The pretreatment of oil palm frond (OPF) has been carried out using 1-butyl-3-methylimidazolium bromide ([BMIM]Br) in the presence of aqueous sulphuric acid (H2SO4). The effects of reaction temperature, reaction time and [BMIM]Br loading on lignin degradation were investigated by applying Box Behnken Design of Response Surface Methodology (RSM). The optimized process condition for OPF pretreatment were 123°C, 175 min and 9.9 g of [BMIM]Br loading with an optimum lignin degradation of 88.2%. The experimental results fitted-well with the predicted value with less than 5% error. It was also demonstrated that lignin degradation using recycled [BMIM]Br gave sufficient performance for five successive runs. It was revealed from SEM and XRD analyses, that the pretreated OPF was porous and less crystalline after pretreatment. Consequently, the pretreated OPF renders 25.3% levulinic acid yield in acid hydrolysis compared to 18.2% yield for untreated OPF.

References

Nigam, P. S. and Singh, A. 2011. Production Biofuels from Renewable Resources. Progress of Liquid in Energy and Combustion Science. 37(1): 52–68.

Ya’aini, N., Amin, N. A. S. and Asmadi, M. 2012. Optimization of Levulinic Acid from Lignocellulosic Biomass Using a New Hybrid Catalyst. Bioresource Technology. 116(0): 58–65.

Alonso, D. M., Bond, J. Q. and Dumesic, J. A. 2010. Catalytic Conversion of Biomass to Biofuels. Green Chemistry. 12(9): 1493–1513.

Utami, S. P. and Amin, N. S. 2013. Optimization of Glucose Conversion to 5-hydroxymethylfulfural using [BMIM]Cl with Ytterbium Triflate. Industrial Crops and Products. 41(0): 64–70.

Galbe, M. and Zacchi, G. 2007. Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production. In L. Olsson (Ed.). Biofuels. Springer Berlin Heidelberg. 108: 41–65

McIntosh, S. and Vancov, T. 2011. Optimisation of Dilute Alkaline Pretreatment for Enzymatic Saccharification of Wheat Straw. Biomass and Bioenergy. 35(7): 3094–3103.

Misson, M., Haron, R., Kamaroddin, M. F. A. and Amin, N. A. S. 2009. Pretreatment of Empty Palm Fruit Bunch for Production of Chemicals via Catalytic Pyrolysis. Bioresource Technology. 100(11): 2867–2873.

Goh, C. S., Lee, K. T. and Bhatia, S. 2010. Hot Compressed Water Pretreatment of Oil Palm Fronds to Enhance Glucose Recovery for Production of Second Generation Bio-ethanol. Bioresource Technology. 101(19): 7362–7367.

Chen, H., Yu, B. and Jin, S. 2011. Production of Levulinic Acid from Steam Exploded Rice Straw via Solid Superacid. Bioresource Technology. 102(3): 3568–3570.

Heinze, T., Schwikal, K. and Barthel, S. 2005. Ionic Liquids as Reaction Medium in Cellulose Functionalization. Macromolecular Bioscience. 5(6): 520–525.

Li, Q., He, Y.-C., Xian, M., Jun, G., Xu, X., Yang, J.-M. and Li, L.-Z. 2009. Improving Enzymatic Hydrolysis of Wheat Straw Using Ionic Liquid 1-ethyl-3-methyl Imidazolium Diethyl Phosphate Pretreatment. Bioresource Technology. 100(14): 3570–3575.

Nguyen, T.-A. D., Kim, K.-R., Han, S. J., Cho, H. Y., Kim, J. W., Park, S. M., Park, J. C. and Sim, S. J. 2010. Pretreatment of Rice Straw with Ammonia and Ionic Liquid for Lignocellulose Conversion to Fermentable Sugars. Bioresource Technology. 101(19): 7432–7438.

Rodríguez, H., Padmanabhan, S., Poon, G. and Prausnitz, J. M. 2011. Addition of Ammonia and/or Oxygen to an Ionic Liquid for Delignification Of Miscanthus. Bioresource Technology. 102(17): 7946–7952.

Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., Vogel, K. P., Simmons, B. A. and Singh, S. 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass Recalcitrance, Delignification and Enzymatic Saccharification. Bioresource Technology. 101(13): 4900–4906.

Haykir, N. I., Bahcegul, E., Bicak, N. and Bakir, U. 2013. Pretreatment of Cotton Stalk with Ionic Liquids Including 2-Hydroxy Ethyl Ammonium Formate to Enhance Biomass Digestibility. Industrial Crops and Products. 41(0): 430–436.

Lee, S. H., Doherty, T. V., Linhardt, R. J. and Dordick, J. S. 2009. Ionic Liquid-mediated Selective Extraction of Lignin from Wood Leading to Enhanced Enzymatic Cellulose Hydrolysis. Biotechnology and Bioengineering. 102(5): 1368–1376.

Cornell, J. A. 1990. How to Apply Response Surface Methodology: American Society for Quality Control.

Ayeni, A. O., Banerjee, S., Omoleye, J. A., Hymore, F. K., Giri, B. S., Deshmukh, S. C., Pandey, R. A. and Mudliar, S. N. 2013. Optimization of Pretreatment Conditions Using Full Factorial Design and Enzymatic Convertibility of Shea Tree Sawdust. Biomass and Bioenergy. 48(0): 130–138.

Saini, J. K., Anurag, R. K., Arya, A., Kumbhar, B. K. and Tewari, L. 2013. Optimization of Saccharification of Sweet Sorghum Bagasse Using Response Surface Methodology. Industrial Crops and Products. 44(0): 211–219.

Yoon, L. W., Ang, T. N., Ngoh, G. C. and Chua, A. S. M. 2012. Regression Analysis on Ionic Liquid Pretreatment of Sugarcane Bagasse and Assessment of Structural Changes. Biomass and Bioenergy. 36(0): 160–169.

Kootstra, A. M. J., Beeftink, H. H., Scott, E. L. and Sanders, J. P. 2009. Optimization of the Dilute Maleic Acid Pretreatment of Wheat Straw. Biotechnology for Biofuels. 2: 31–34.

Sun, N., Rahman, M., Qin, Y., Maxim, M. L., Rodriguez, H. and Rogers, R. D. 2009. Complete Dissolution and Partial Delignification of Wood in the Ionic Liquid 1-ethyl-3-methylimidazolium Acetate. [10.1039/B822702K]. Green Chemistry. 11(5): 646–655.

Montgomery, D. C. 2008. Design and Analysis of Experiments: John Wiley & Sons.

Wan Omar, W. N. N. and Saidina Amin, N. A. 2011. Optimization of Heterogeneous Biodiesel Production from Waste Cooking Palm Oil via Response Surface Methodology. Biomass and Bioenergy. 35(3): 1329–1338.

Sidik, D. A. B., Ngadi, N. and Amin, N. A. S. 2013. Optimization of Lignin Production from Empty Fruit Bunch via Liquefaction with Ionic Liquid. Bioresource Technology. 135(0): 690–696.

Tan, H. T., Lee, K. T. and Mohamed, A. R. 2011. Pretreatment of Lignocellulosic Palm Biomass Using a Solvent-ionic Liquid [BMIM]Cl for Glucose Recovery: An Optimisation Study Using Response Surface Methodology. Carbohydrate Polymers. 83(4): 1862–1868.

Tan, S. S. Y., MacFarlane, D. R., Upfal, J., Edye, L. A., Doherty, W. O. S., Patti, A. F., Pringle, J. M. and Scott, J. L. 2009. Extraction of Lignin from Lignocellulose at Atmospheric Pressure Using Alkylbenzenesulfonate Ionic Liquid. [10.1039/B815310H]. Green Chemistry. 11(3): 339–345.

Chang, C., Cen, P. and Ma, X. 2007. Levulinic Acid Production from Wheat Straw. Bioresource Technology. 98(7): 1448–1453.

Reddy, N. and Yang, Y. 2009. Properties and Potential Applications of Natural Cellulose Fibers from the Bark of Cotton Stalks. Bioresource Technology. 100(14): 3563–3569.

Kuo, C.-H. and Lee, C.-K. 2009. Enhancement of Enzymatic Saccharification of Cellulose by Cellulose Dissolution Pretreatments. Carbohydrate Polymers. 77(1): 41–46.

Kumar, S., Kothari, U., Kong, L., Lee, Y. Y. and Gupta, R. B. 2011. Hydrothermal Pretreatment of Switchgrass and Corn Stover for Production of Ethanol and Carbon Microspheres. Biomass and Bioenergy. 35(2): 956–968.

Oh, S. Y., Yoo, D. I., Shin, Y., Kim, H. C., Kim, H. Y., Chung, Y. S., Park, W. H. and Youk, J. H. 2005. Crystalline Structure Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide by Means of X-Ray Diffraction and FTIR Spectroscopy. Carbohydrate Research. 340(15): 2376–2391.

Adel, A. M., Abd El-Wahab, Z. H., Ibrahim, A. A. and Al-Shemy, M. T. 2011. Characterization of Microcrystalline Cellulose Prepared from Lignocellulosic Materials. Part II: Physicochemical Properties. Carbohydrate Polymers. 83(2): 676–687.

Bozell, J. J., Moens, L., Elliott, D. C., Wang, Y., Neuenscwander, G. G., Fitzpatrick, S. W., Bilski, R. J. and Jarnefeld, J. L. 2000. Production of Levulinic Acid Use as a Platform Chemical for Derived Products. Resources, Conservation and Recycling. 28(3–4): 227–239.

Samayam, I. P. and Schall, C. A. 2010. Saccharification of Ionic Liquid Pretreated Biomass with Commercial Enzyme Mixtures. Bioresource Technology. 101(10): 3561–3566.

Dadi, A., Schall, C. and Varanasi, S. 2007. Mitigation of Cellulose Recalcitrance to Enzymatic Hydrolysis by Ionic Liquid Pretreatment. Applied Biochemistry and Biotechnology. 137–140(1–12): 407–421.

Swatloski, R. P., Spear, S. K., Holbrey, J. D. and Rogers, R. D. 2002. Dissolution of Cellose with Ionic Liquids. Journal of the American Chemical Society. 124(18): 4974–4975.

Weerachanchai, P., Leong, S. S. J., Chang, M. W., Ching, C. B. and Lee, J.-M. 2012. Improvement of Biomass Properties by Pretreatment with Ionic Liquids for Bioconversion Process. Bioresource Technology. 111(0): 453–459.

Sant’Ana da Silva, A., Lee, S.-H., Endo, T. and P. S. Bon, E. 2011. Major Improvement in the Rate and Yield of Enzymatic Saccharification of Sugarcane Bagasse via Pretreatment with the Ionic Liquid 1-ethyl-3-methylimidazolium Acetate ([Emim] [Ac]). Bioresource Technology. 102(22): 10505–10509.

Downloads

Published

2014-10-28

Issue

Section

Science and Engineering

How to Cite

Optimization of Oil Palm Fronds Pretreatment Using Ionic Liquid for Levulinic Acid Production. (2014). Jurnal Teknologi, 71(1). https://doi.org/10.11113/jt.v71.2815