Development of Wideband Power Amplifier for RF / Microwave Front-End Subsystem

Authors

  • Z. Zakaria Center for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka, Malaysia
  • M. F. M. Fadzil Center for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka, Malaysia
  • A. R. Othman Center for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka, Malaysia
  • A. Salleh Center for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka, Malaysia
  • A. A. M. Isa Center for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka, Malaysia
  • N. Z. Haron Center for Telecommunication Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka, Malaysia

DOI:

https://doi.org/10.11113/jt.v68.2955

Keywords:

Wideband power amplifier, amplifier architecture, linearization technique, characterization of power amplifier

Abstract

This paper reviews the Wideband Power Amplifier (PA) that has been developed since 1990. Several journals had been discussed in this paper covers few topics such as Characterization of Power Amplifiers, Power Amplifier Architecture and Linearization Technique. Advantages and disadvantages of the technique used had been highlighted as well as the summary of those cases been compiled in the table form for comparison purposes. Power Amplifier is one of the important parts in transmitter. However, when involve transistor as an active device, it is important to ensure that the signals are stabilized and transmitted at higher efficiency. This leads to the proposal of a new design of Wideband Power Amplifier based on the concept of the multiplexer.

References

C. D. D. Gelerman. 2012. A New Generation of Gallium Nitride (GaN) based Solid State Power Amplifiers for Satellite Communication. 1–8,

Risk Assessment Section Food and Environmental Hygiene Department, Hong Kong. Microwave Cooking and Food Safety. June 2005.

K. Mimis, K. A. Morris, S. Bensmida, and J. P. Mcgeehan. 2012. Multichannel and Wideband Power Ampli fi er Design Methodology for 4G Communication Systems Based on Hybrid Class-J Operation. 60(8): 2562–2570.

M. M. M. I. Hella. 2002. RF CMOS Power Amplifier Theory, Design and Implementation.

P. Wright, J. Lees, J. Benedikt, P. J. Tasker, S. Member, and S. C. Cripps. 2009. A Methodology for Realizing High Efficiency Class-J in a Linear and Broadband PA. 57(12): 3196–3204.

K. Chen, S. Member, and D. Peroulis. 2011. Design of Highly Efficient Broadband Class-E Power Amplifier Using Synthesized Low-Pass Matching Networks. 59(12): 3162–3173.

V. Carrubba, a. L. Clarke, S. P. Woodington, W. McGenn, M. Akmal, a. AlMuhaisen, J. Lees, S. C. Cripps, P. J. Tasker, and J. Benedikt. 2011. High-speed Device Characterization Using An Active Load-pull System and Waveform Engineering Postulator. 77th ARFTG Microw. Meas. Conf. 1–4.

R. Köprü. 2013. A Novel Method to Design Wideband Power Amplifier for Wireless Communication. 3: 1942–1945.

C. Y. Law and A. Pham. 2010. A High-Gain 60GHz Power Amplifier with 20dBm Output Power in 90nm CMOS. June 2009: 2009–2011.

R. Santhakumar, B. Thibeault, S. Member, M. Higashiwaki, S. Keller, Z. Chen, U. K. Mishra, and R. A. York. 2011. Two-Stage High-Gain High-Power Distributed Amplifier Using Dual-Gate GaN HEMTs. 59(8): 2059–2063.

D. A. Chan, S. Member, and M. Feng. 2011. A Compact W-Band CMOS Power Amplifier with Gain Boosting and Short-Circuited Stub Matching for High Power and High Efficiency Operation. 21(2): 98–100.

S.-K. Wong, S. Maisurah, M. Osman, F. Kung, and J.-H. See. 2009. High Efficiency CMOS Power Amplifier for 3 to 5 GHz Ultra-Wideband (UWB) Application. IEEE Trans. Consum. Electron., 55(3): 1546–1550.

D. Wu, F. Mkadem, and S. Boumaiza. 2010. Design of a Broadband and Highly Efficient 45W GaN Power Amplifier via Simplified Real Frequency Technique. 2010 IEEE MTT-S Int. Microw. Symp. 1–1.

M. P. van der Heijden, M. Acar, J. S. Vromans, and D. a. Calvillo-Cortes. 2011. A 19W High-efficiency Wide-band CMOS-GaN class-E Chireix RF Outphasing Power Amplifier. 2011 IEEE MTT-S Int. Microw. Symp. 1–1.

M. Kwak, D. Kimball, C. Presti, A. Scuderi, C. Santagati, J. Yan, P. Asbeck, and L. Larson. 2011. Wideband High Efficiency Envelope Tracking Integrated Circuit for Micro-base Station Power Amplifiers. 2011 IEEE Radio Freq. Integr. Circuits Symp. 1–4.

P. Varahram, S. Mohammady, and M. Nizar. 2009. Digital Perdistortion Technique For Compensating Memory Effects of Power Amplifiers in Wideband Applications. 60(3): 129–135.

Y. Suzuki, J. Ohkawara, and S. Narahashi, 2010. Experimental Investigation on Wideband Intermodulation Distortion Compensation Characteristics of 3 . 5-GHz band 140-W Class Feed-Forward Power Amplifier Employing GaN HEMTs. 3–6,

S. Sen, S. Devarakond, S. Member, and A. Chatterjee. 2012. Phase Distortion to Amplitude Conversion-Based Low-Cost Measurement of AM-AM and AM-PM Effects in RF Power Ampli fiers. 20(9): 1602–1614,

T. Karur. 2013. Design and Linearization of Solid State Power Amplifier using Pre-distortion Technique.. 13–15.

E. Reese, D. Allen, C. Lee, T. Nguyen, and T. Semiconductor. 2010. Wideband Power Amplifier MMICs Utilizing GaN on SiC make. 1230–1233.

P. Saad, S. Member, C. Fager, H. Cao, H. Zirath, S. Member, and K. Andersson. 2010. Design of a Highly Efficient 2–4-GHz Octave Bandwidth GaN-HEMT Power Amplifier 58(7): 1677–1685.

V. Pala, S. Member, H. Peng, P. Wright, M. M. Hella, and T. P. Chow. 2012. Integrated High-Frequency Power Converters Based on GaAs pHEMT : Technology Characterization and Design Examples. 27(5): 2644–2656.

S. Toyoda. 1990. Broad Band Push Pull Power Amplifier.

S. Toyoda. 1993. High Efficiency Single and Push-Pull Power Amplifiers. 1993 IEEE MTT-S Int. Microw. Symp. Dig. 277–280.

W. R. Deal, V. Radisic, and T. Itoh, 1999. Integrated-antenna push-pull power amplifiers. IEEE Trans. Microw. Theory Tech. 47(8): 1418–1425.

C. Y. Hang, S. Member, W. R. Deal, Y. Qian, and S. Member. 2001. High-Efficiency Push – Pull Power Amplifier Integrated with Quasi-Yagi Antenna. 49(6):1155–1161.

J. Yim, I. Kim, D. Kang, and B. Kim. 2007. High-Efficiency Push – Pull Power Amplifier With High Operation Voltage. 17(5): 382–384.

O. N. Microwavb. 1980. Application of the Two-Way Balanced Amplifier Concept to Wide-Band Power Amplification Using GaAs MESFET ’ S. 172–179.

U. Gate, G. H. Mmic, M. Aust, H. Wang, M. Biedenbender, I. R. La, D. C. Stseit, S. Member, P. H. Liu, G. S. Dow, and B. R. Allen. 1995. A 94-GHz Monolithic Balanced Power Amplifier Production Process Technology. 5(1): 12–14.

H. Jeon, Y. Yoon, H. Kim, Y. Huang, and C. Lee. 2011. Highly Efficient Balanced CMOS Linear Power Amplifier with Load Immunity. 47(19): 18–19.

H. Jeon, S. Member, Y. Park, Y. Huang, J. Kim, K. Lee, C. Lee, S. Member, and J. S. Kenney. 2012. A Triple-Mode Balanced Linear CMOS Power Amplifier Using a Switched-Quadrature Coupler. 47(9): 2019–2032.

J. Jeong, S. Member, Y. Kwon, and S. Lee. 2000. 1.6 and 3.3-W Power-Amplifier Modules at 24 GHz Using Waveguide-Based Power-Combining Structures. 48(12): 2700–2708.

P. Technique, P. Jia, L. Chen, S. Member, and A. Alexanian. 2003. Broad-Band High-Power Amplifier Using Spatial. 51(12): 2469–2475.

M. T. V Fusco. 2008. Power Combining Techniques into Unbalanced loads for Class-E and inverse Class-E Amplifiers. October 2007: 529–537.

K. Song, Y. Fan, and X. Zhou. 2009. Broadband Radial Waveguide Power Amplifier Using a Spatial Power Combining Technique. IET Microwaves, Antennas Propag. 3(8): 1179.

P. Applications, R. Bashirullah, S. Member, and A. Mortazawi. 2000. A Slotted-Waveguide Power Amplifier for Spatial Power-Combining Applications. 48(7): 1142–1147.

P. A. U. Free-space, Y. A. Atesal, S. Member, B. Cetinoneri, M. Chang, R. Alhalabi, and G. M. Rebeiz. 2011. Millimeter-Wave Wafer-Scale Silicon BiCMOS Power Combining. 59(4): 954–965.

W. M. Leach. 1995. On the Calculation of Noise in Multistage Amplifiers. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42(3): 176–178.

F. You, S. H. K. Embabi, and S. Edgar. 1997. Multistage Amplifier Topologies - Compensation with Nested Gm-C Compensation. 32(12): 2000–2011.

H. Ng, R. M. Ziazadeh, and D. J. Allstot. 1999. A Multistage Amplifier Technique with Embedded Frequency Compensation. 34(3): 339–347.

B. K. Thandri, J. Silva-martínez, and S. Member. 2003. A Robust Feedforward Compensation Scheme for Multistage Operational Transconductance Amplifiers With No Miller Capacitors. 38(2): 237–243.

W. Sansen. 2005. Transconductance with Capacitances Feedback Compensation for Multistage Amplifiers. IEEE J. Solid-State Circuits. 40(7): 1514–1520.

N. Srirattana, S. Member, A. Raghavan, D. Heo, P. E. Allen, J. Laskar, and S. Member. 2005. Analysis and Design of a High-Efficiency Multistage Doherty Power Amplifier for Wireless Communications. 53(3): 852–860.

J. Chen, X. Liu, C. Lu, Y. Wang, and Z. Li. 2006. Design of Multistage Gain-flattened Fiber Raman Amplifiers. J. Light. Technol. 24(2): 935–944.

G. Baudoin and P. Jardin. 2001. Adaptive Polynomial Pre-Distortion for Linearization of Power Amplifiers in Wireless Communication and WLAN. 157–160.

R. Marsalek, P. Jardin, and G. Baudoin. 2003. From Post-distortion to Pre-distortion for Power Amplifiers Linearization. IEEE Commun. Lett. 7(7): 308–310.

R. Sperlich, G. Copeland, and J. S. Kenney. 2004. Power Amplifier Linearization with Digital Pre-distortion and Crest Factor Reduction. 2004 IEEE MTT-S Int. Microw. Symp. Dig. (IEEE Cat. No.04CH37535). 2: 669–672.

E. G. Jeckeln, F. M. Ghannouchi, S. Member, and M. A. Sawan. 2004. A New Adaptive Predistortion Technique Using Software-Defined Radio and DSP Technologies Suitable for Base Station 3G Power Amplifiers. 52(9): 2139–2147.

P. Roblin, S. K. Myoung, D. Chaillot, Y. G. Kim, A. Fathimulla, J. Strahler, and S. Bibyk. 2008. Frequency-Selective Predistortion Linearization of RF Power Amplifiers. IEEE Trans. Microw. Theory Tech. 56(1): 65–76.

Y. Chung and J. Jones. 2008. Si-LDMOS High Power Amplifier RFIC with Integrated Analogue Pre-distorter. 44(5): 5–6.

H.-Y. Y. and T.-W. H. Jeng-Han Tsai (IEEE); Chung-Han Wu. 2011. A 60 GHz CMOS Power Amplifier With Built-in Pre-Distortion Linearizer. 21(12): 676–678.

C. Nader, S. Member, P. N. Landin, W. Van Moer, S. Member, N. Björsell, P. Händel, and D. Rönnow. 2012. Peak-Power Controlling Technique for Enhancing Digital Pre-Distortion of RF Power Amplifiers. 60(11): 3571–3581.

Y. J. Seong, C. S. Cho, and J. W. Lee. 2012. Digital Pre-distortion Architecture for RF Power Amplifier Based on Affine Projection Algorithm. Electron. Lett. 48(15): 947.

F. P. E. B. J. Perez. 1985. Linearisation of Microwave Power Amplifiers Using Active Feedback Networks. 21(1): 2–3.

C. Rogers, J. O. P. Microwave, and B. M. Lane. 1995. Linearisation of Power Amplifier Using RF Feedback. 31(23): 2023–2024.

T. Sowlati, S. Member, Y. M. Greshishchev, and C. Andr. 1997. Phase-Correcting Feedback System for Class E Power Amplifier. 32(4): 544–550.

A. O. S. Dual-band, K. Yamamoto, S. Suzuki, K. Mori, T. Asada, and T. Okuda. 2000. AlGaAs / GaAs HBT MMIC Power Amplifier with Active Feedback Circuit Technique. 35(8): 1109–1120.

H. Park, S. Member, D. Baek, K. Jeon, and S. Hong. 2000. A Predistortion Linearizer Using Envelope-Feedback Technique with Simplified Carrier Cancellation Scheme for Class-A and Class-AB Power Amplifiers. 48(6): 898–904.

J. L. Dawson and T. H. Lee. 2003 Automatic Phase Alignment for a Fully Integrated Cartesian Feedback Power Amplifier System. IEEE J. Solid-State Circuits. 38(12): 2269–2279.

Downloads

Published

2014-05-01

How to Cite

Development of Wideband Power Amplifier for RF / Microwave Front-End Subsystem. (2014). Jurnal Teknologi, 68(3). https://doi.org/10.11113/jt.v68.2955