Optimisation of Process Parameters for Lower Leakage Current in 22 nm n-type MOSFET Device using Taguchi Method

Authors

  • Afifah Maheran, A. H. Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
  • Menon, P. S. Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
  • I. Ahmad Centre for Micro and Nano Engineering (CeMNE), College of Engineering, Universiti Tenaga Nasional (UNITEN), 43009 Kajang, Selangor, Malaysia
  • S. Shaari Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v68.2994

Keywords:

Taguchi Method, 22 nm n-type MOSFETs, high-k/metal gate, leakage current, Silvaco software

Abstract

In this article, Taguchi orthogonal array method was used to optimize the process parameters during the design of a 22 nm n-type Metal Oxide Semiconductor Field Effect Transistor (MOSFET) in order to decrease the leakage current (ILEAK) of the device. Titanium dioxide (TiO2) was used as the dielectric layer to replace the traditional silicon dioxide SiO2 and tungsten silicide (WSix) was used as a metal gate to replace polysilicon. The device’s fabrication and electrical characterization were executed using ATHENA and ATLAS modules from Silvaco International. Taguchi’s Power of Three Series L9 orthogonal array was used to optimize the device process parameters and to finally predict the best process parameter combination to obtain the minimum leakage current (ILEAK) using Smaller-the-Better (STB) signal-to-noise ratio (SNR). The optimization resulted in the attainment of the lowest ILEAK mean value of 0.25759 nA/µm which is in accordance to the predicted value given in the International Technology Roadmap for Semiconductors (ITRS) 2011.

References

C. Choi. 2012. Thickness and Material Dependence of Capping Layers on Flatband Voltage (VFB) and Equivalent Oxide Thickness (EOT) with High-k Gate Dielectric/Metal Gate Stack for Gate-First Process Applications. Microelectronic Engineering. 89: 34–36.

K. Roy, J. P. Kulkarni, and S. K. Gupta. 2009. Device/circuit Interactions at 22 nm Technology Node. In IEEE Design Automation Conference (DAC). 97–102.

N. Shashank, S. Basak, and R. K. Nahar. 2010. Design and Simulation of Nano Scale High-K Based MOSFETs with Poly Silicon and Metal Gate Electrodes. International Journal of Advancements in Technology. 1: 252–261.

H. Wong and H. Iwai. 2006. On the Scaling Issues and High-κ Replacement of Ultrathin Gate Dielectrics for Nanoscale MOS Transistors. Microelectronic Engineering. 83: 1867–1904.

A. H. Afifah Maheran, P. S. Menon, I. Ahmad, S. Shaari, H. A. Elgomati, and F. Salehuddin. 2013. Design and Optimization of 22 nm Gate Length High-k/Metal gate NMOS Transistor. Journal of Physics: Conference Series. 431:. 1–9.

K. Roy, S. Mukhopadhyay, and S. Member. 2003. Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits. Proceedings of The IEEE. 91: 305–327.

B. H. Calhoun, S. Khanna, R. Mann, and W. Jiajing. 2009. Sub-threshold Circuit Design with Shrinking CMOS Devices. In IEEE International Symposium on Circuits and Systems (ISCAS). 2541–2544.

R. Benchekroun and J. Shen. 2003. Recovering Fractal Model by Optimisation using Orthogonal Tables and Fixed Points. IEEE International Symposium on Signal Processing and Information Technology. 629–632.

J. C. Zhang and M. A. Styblinski. 1991. Desing of Experiments Approach to Gradient and Its Application to CMOS Circuit Stochastic Optimization. IEEE International Symposium on Circuits and Systems. 1: 3098–3101.

Madhav S Phadke. 2008. Pearson Education Inc. And Dorling Kindersley Publishing Inc. India.

ITRS 2011. www.ITRS2011.net.

F. Salehuddin, I. Ahmad, F. A. Hamid, and A. Zaharim. 2011. Impact of Different Dose and Angle in HALO Structure for 45 nm NMOS Device. Advanced Materials Research. 383–390: 6827–6833.

D. Rathee, S. K. Arya, and M. Kumar. 2011. Preparation and Characterization of TiO2 and SiO2Thin Films. World Journal of Nano Science and Engineering. 1: 84–88.

A. H. Afifah Maheran, P. S. Menon, I. Ahmad, H. A. Elgomati, B. Y. Majlis, and F. Salehuddin. 2012. Scaling Down of the 32 nm to 22 nm Gate Length NMOS Transistor. In IEEE International Conference on Semiconductor Electronics (ICSE). 173–176.

A. H. Afifah Maheran, P. S. Menon, I. Ahmad, S. Shaari, H. A. Elgomati, and B. Y. Majlis. 2012. Design and Optimization of 22 nm NMOS Transistor. Australian Journal of Basic and Applied Sciences. 6: 1–8.

G. T. Sarcona, M. Stewart, and M. K. Hatalis. 1999. Polysilicon Thin-film Transistors Using Self-aligned Cobalt and Nickel Silicide Source and Drain Contacts. IEEE Electron Device Letters. 20: 332–334.

H. A. Elgomati, B. Y. Majlis, A. M. A. Hamid, P. M. Susthitha, and I. Ahmad. 2012. Modelling of Process Parameters for 32nm PMOS Transistor Using Taguchi Method. Asia Modelling Symposium (AMS). 40–45.

R. Dolah, Z. Miyagi, and B. Bergman. 2013. Outliers Effect in Measurement Data for T-peel Adhesion Test Using Robust Parameter Design. International Conference on Robust Quality Engineering (ICRQE). 41–45.

S. Ahmad, N. Muhamad, A. Muchtar, J. Sahari, K. R. Jamaludin, M. H. I. Ibrahim, and N. H. M. Nor. 2013. Optimization of Sintering Parameters of Titanium Alloy Foams Using Taguchi Method for Improved Electrical Conductivity. International Conference on Robust Quality Engineering (ICRQE). 5: 50–54.

Downloads

Published

2014-05-15

How to Cite

Optimisation of Process Parameters for Lower Leakage Current in 22 nm n-type MOSFET Device using Taguchi Method. (2014). Jurnal Teknologi (Sciences & Engineering), 68(4). https://doi.org/10.11113/jt.v68.2994