Influence Of Composition and Sintering Temperature on Density for Pure and Titanium Alloy Foams
DOI:
https://doi.org/10.11113/jt.v68.3002Keywords:
Slurry method, sintering process, PU, porosityAbstract
Metallic foams with high fraction of porosity have gained their usefulness and are now becoming a new class of materials for various engineering applications. Due to this, the present work aims to produce pure titanium and alloy titanium foams with high density using different composition and sintering temperature. The slurry method is selected to produce the pure titanium and alloy titanium foam. The titanium slurry is prepared by mixing pure or titanium alloy powder, polyethylene glycol (PEG), methylcellulose and water. Polyurethane (PU) foam is then impregnated in the slurry and dried at room temperature. This is later sintered in a high temperature vacuum furnace with different sintering temperatures. The density of the samples was tested using Archimedes test. From the result of analysis of variance, composition and sintering temperature affect the density of the samples for pure and titanium alloy foams. The suitable compositions of pure and alloy titanium are 60 wt%, 65 wt%, 70 wt% and sintering temperatures are 1200°C, 1250°C and 1300°C to produce a high density for the pure and titanium alloy foams.Â
References
Derek, L. Steven, L. Jeffrey, A. R., Andrew, M, Donnamarie, A, Zach, S & Bryan, S. 2008. Mechanical Properties of Open-cell Titanium and Titanium Alloy Foams Made by PM Process. Proceeding of Advances in Powder Metallurgy & Particulate Materials. Washington, D.C.
Degischer, H. P. & Kriszt, B. 2002. Handbook of Cellular Metals. Production, Processing, Application. Wiley-VCH.
Ashby, M. F, Evans, A., Fleck, N. A., Gibson, L. J., Hutchison, J. W. & Wadley, H. N .G. 2000. Metal Foams–A Design Guide. United State: Butterworth-Heinemann.
Ryan, G. E., Pandit, A. S., & Apatsidis, D. P. 2008. Porous Titanium Scaffolds Fabricated Using a Rapid Prototyping and Powder Metallurgy Technique. Journal of Biomaterials. 29: 3625–3635.
Thieme, M., Wieters, K. P., Bergner, F., Scharnweber, D., Worch, H., Ndop, J., Kim, T. J. & Grill, W. 2001. Titanium Powder Sintering for Preparation of a Porous Functionally Graded Materials Destined for Orthopaedic Implants. Journal of Materials Science: Materials in Medicine. 12: 225–231.
Li, J.P., Li, S.H., Groot, K.de & Layrolle, P. 2002. Preparation and Characterization of Porous Titanium. Key Engineering Materials. 218–220: 51–54.
Ramay, H.R. & Zhang, M. 2003. Preparation of Porous Hydroxyapatite Scaffolds by Combination of the Gel-casting and Polymer Sponge Methods. Journal of Biomaterials. 24: 3293–3302.
Li, J. P., Li, S. H., Groot, K. de & Layrolle, P. 2003. Improvement of Porous Titanium with Thicker Struts. Key Engineering Materials. 240–242: 547–555.
German, R. M. 1996. Sintering Theory and Practice. USA: Wiley-Interscience Publication.
S. Ahmad , N. Muhamad, A. Muchtar, J. Sahari, K. R. Jamaludin, M. H. I. Ibrahim, N. H. Mohamad Nor and Mutadhahadi. 2010. Pencirian Titanium Berbusa yang Dihasilkan Pada Suhu Pensinteran yang Berbeza Menggunakan Kaedah Buburan. Journal Sains Malaysiana. 39(1): 77–82.
Surace, R., De Filippis, L. A. C., Ludovico, A. D. & Boghetich, G. 2009. Journal of Materials and Design. 30: 1878–1885.
Wen, C. E., Yamada, Y., Shimojima, K., Chino, Y. & Asahina, T. & Mubuchi, M. 2002. Novel Titanium Foam for Bone Tissue Engineering. Journal of Materials Research. 17(10): 2633–2639.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.