CHOOSING THE BEST FIT DISTRIBUTION FOR RAINFALL EVENT CHARACTERISTICS BASED ON 6H-IETD WITHIN PENINSULAR MALAYSIA
DOI:
https://doi.org/10.11113/jt.v75.3058Keywords:
Rainfall event, distribution model, inter-event time definition, Peninsular of MalaysiaAbstract
In selecting the best-fit distribution model for the rainfall event characteristics based on the inter-event time definition (IETD) of 6 hours for the selected rainfall in the Peninsular of Malaysia, seven distributions were utilized namely the beta (B4), exponential (EX1), gamma (G2), generalized extreme value (GEV), generalized Pareto (GP), Log-Pearson 3 (LP3), and Wakeby (WKB). Maximum likelihood estimation (MLE) was applied to estimate the parameters of each distribution. Based on the results, GP, WKB and GEV were found to be the most suitable distribution for describing the rainfall event characteristics in the studied regions. Â
References
Draper, A. J., M. W. Jenkins, K. W. Kirby, J. R. Lund, R. E. Howitt. 2003. Economic-engineering Optimization for California Water Management. J. Water Resour. Plan. Manage.-ASCE. 129(3): 155-164.
Jamaludin, S., A. A. Jemain. 2007. Fitting the Statistical Distributions to the Daily Rainfall Amount in Peninsular Malaysia. Jurnal Teknologi. 46(C): 33-48.
Wan Zin, W. Z., A. A. Jemain, K. Ibrahim. 2008. The Best Fitting Distribution of Annual Maximum Rainfall in Peninsular Malaysia Based on Methods of L-moment and LQ-moment. Theoretical and Applied Climatology. 96(3-4): 337-344. doi:10.1007/s00704-008-0044-2.
Wilks, D. S. 2011. Statistical Methods in the Atmospheric Sciences. 3. Ed. San Diego: Academic Press.
Blain, G. C., M. B. P. de Camargo. 2012. Probabilistic Structure of an Annual Extreme Rainfall Series of a Coastal Area of the State of São Paulo. Brazil. Engenharia AgrÃcola. 32(3): 552-559.
Rosenberg, E. A., P. W. Keys, D. B. Booth, D. Hartley, J. Burkey, A. C. Steinemann, D. P. Lettenmaier. 2010. Precipitation Extremes and the Impacts of Climate Change on Stormwater Infrastructure in Washington State. Clim Change. 102: 319-349.doi:10.1007/s10584-010-9847-0.
Fadhilah, Y., M. D. Zalina, V. T. V. Nguyen, S. Suhaila, Y. Zulkifli. 2007. Fitting the Best-Fit Distribution for the Hourly Rainfall Amount in the Wilayah Persekutuan. Jurnal Teknologi. 46(C): 49-58.
Zalina, M. D., V. T. V. Nguyen, M. K. Amir Hashim M. D. Mohd Nor. 2002. Selecting a Probability Distribution for Extreme Rainfall Series in Malaysia. Water Science Technology Journal. 45(2): 63-68.
Dan’azumi, S., S. Shamsudin, A. Aris. 2010. Modeling the Distribution of Rainfall Intensity Using Hourly Data. American Journal of Environmental Sciences. 6(3): 238-243.
Eagleson, P. S. 1978. Climate, Soil, And Vegetation: 2. The Distribution of Annual Precipitation Derived from Observed Storm Sequences. Water Resour. Res. 14(5): 713-721.
Eagleson, P. S. 1972. Dynamics of Flood Frequency. Water Resour. Res. 8(4): 878-898.
Howard, C. D. D. 1976. Theory of Storage and Treatment Plant Overflows. J. Environ. Eng. 102(EE4): 709-722.
Adams, B. J., J. B. Bontje. 1984. Microcomputer Applications of Analytical Models For Urbanstormwater Management, in Emerging Computer Techniques In Stormwater and Flood Management. Am. Soc. Civ. Eng. New York.
Adams, B. J., H. G. Fraser, C. D. D. Howard, M. S. Hanafy. 1986. Meteorologic Data Analysis for Drainage System Design. J. Environ. Eng. 112(5): 827-848.
Morgan, E. C., M. Lackner, R. M. Vogel, L. G. Baise. 2011. Probability Distributions for Offshore Wind Speeds. Energy Conversion and Management. 52: 15-26.
Adams, B. J., F. Papa. 2000. Urban Storm Water Management Planning with Analytical Probabilistic Models. 1st Edn. John Wiley and Sons, New York. 53-79.
Guo, Y., B. J. Adams. 1998. Hydrologic Analysis of Urban Catchments with Event-based Probabilistic Models 1 .Runoff Volume. Water Resources Research. 34(12): 3421-3431.
Myung, I. J. 2003. Tutorial on Maximum Likelihood Estimation. Journal of Mathematical Psychology. 47: 90-100.
Burgueno, A., B. Codina, A. Redafio, J. Lorente. 1994. Basic Statistical Characteristics of Hourly Rainfall Amounts in Barcelona (Spain). Theor. Appl. Climatol. 49: 175-181.
Dunkerley. D. 2008. Identifying Individual Rain Events from Pluviograph Records: A Review with Analysis of Data from an Australian Drylandsite. Hydrol. Process. 22: 5024-5036.
Dan'azumi, S., S. Shamsudin, A. Aris. 2013. Development of Analytical Probabilistic Model Parameters for Urbanstormwater Management. Sains Malaysiana. 42(3): 325-332.
Dan'azumi, S., S. Shamsudin, A. Aris. 2013. Optimization of Pollution Control Performance of Wet Detention Ponds in Tropical Urban Catchments Using Particle Swarm Optimization. Journal of Hydroinformatics. 15(2): 529-539. doi:10.2166/hydro.2012.206.
Shamsudin, S., S. Dan'azumi, A. Aris, Z. Yusop. 2014. Optimum Combination of Pond Volume and Outlet Capacity of a Stormwater Detention Pond Using Particle Swarm Optimization. Urban Water Journal. 11(2): 127-136. doi: 10.1080/1573062X.2013.768680.
Suhaila, J., S. Mohd Deni, W. Z. Wan Zin, A. A. Jemain. 2010. Trends in Peninsular Malaysia Rainfall Data During the Southwest Monsoon and Northeast Monsoon Seasons, 1975–2004. Sains Malaysiana. 39(4): 533-542.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.