CHOOSING THE BEST FIT DISTRIBUTION FOR RAINFALL EVENT CHARACTERISTICS BASED ON 6H-IETD WITHIN PENINSULAR MALAYSIA

Authors

  • Zulkarnain Hassan The School of Environmental Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
  • Supiah Shamsudin Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia-Kuala Lumpur, Kuala Lumpur, Malaysia
  • Sobri Harun Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v75.3058

Keywords:

Rainfall event, distribution model, inter-event time definition, Peninsular of Malaysia

Abstract

In selecting the best-fit distribution model for the rainfall event characteristics based on the inter-event time definition (IETD) of 6 hours for the selected rainfall in the Peninsular of Malaysia, seven distributions were utilized namely the beta (B4), exponential (EX1), gamma (G2), generalized extreme value (GEV), generalized Pareto (GP), Log-Pearson 3 (LP3), and Wakeby (WKB). Maximum likelihood estimation (MLE) was applied to estimate the parameters of each distribution.  Based on the results, GP, WKB and GEV were found to be the most suitable distribution for describing the rainfall event characteristics in the studied regions.  

References

Draper, A. J., M. W. Jenkins, K. W. Kirby, J. R. Lund, R. E. Howitt. 2003. Economic-engineering Optimization for California Water Management. J. Water Resour. Plan. Manage.-ASCE. 129(3): 155-164.

Jamaludin, S., A. A. Jemain. 2007. Fitting the Statistical Distributions to the Daily Rainfall Amount in Peninsular Malaysia. Jurnal Teknologi. 46(C): 33-48.

Wan Zin, W. Z., A. A. Jemain, K. Ibrahim. 2008. The Best Fitting Distribution of Annual Maximum Rainfall in Peninsular Malaysia Based on Methods of L-moment and LQ-moment. Theoretical and Applied Climatology. 96(3-4): 337-344. doi:10.1007/s00704-008-0044-2.

Wilks, D. S. 2011. Statistical Methods in the Atmospheric Sciences. 3. Ed. San Diego: Academic Press.

Blain, G. C., M. B. P. de Camargo. 2012. Probabilistic Structure of an Annual Extreme Rainfall Series of a Coastal Area of the State of São Paulo. Brazil. Engenharia Agrícola. 32(3): 552-559.

Rosenberg, E. A., P. W. Keys, D. B. Booth, D. Hartley, J. Burkey, A. C. Steinemann, D. P. Lettenmaier. 2010. Precipitation Extremes and the Impacts of Climate Change on Stormwater Infrastructure in Washington State. Clim Change. 102: 319-349.doi:10.1007/s10584-010-9847-0.

Fadhilah, Y., M. D. Zalina, V. T. V. Nguyen, S. Suhaila, Y. Zulkifli. 2007. Fitting the Best-Fit Distribution for the Hourly Rainfall Amount in the Wilayah Persekutuan. Jurnal Teknologi. 46(C): 49-58.

Zalina, M. D., V. T. V. Nguyen, M. K. Amir Hashim M. D. Mohd Nor. 2002. Selecting a Probability Distribution for Extreme Rainfall Series in Malaysia. Water Science Technology Journal. 45(2): 63-68.

Dan’azumi, S., S. Shamsudin, A. Aris. 2010. Modeling the Distribution of Rainfall Intensity Using Hourly Data. American Journal of Environmental Sciences. 6(3): 238-243.

Eagleson, P. S. 1978. Climate, Soil, And Vegetation: 2. The Distribution of Annual Precipitation Derived from Observed Storm Sequences. Water Resour. Res. 14(5): 713-721.

Eagleson, P. S. 1972. Dynamics of Flood Frequency. Water Resour. Res. 8(4): 878-898.

Howard, C. D. D. 1976. Theory of Storage and Treatment Plant Overflows. J. Environ. Eng. 102(EE4): 709-722.

Adams, B. J., J. B. Bontje. 1984. Microcomputer Applications of Analytical Models For Urbanstormwater Management, in Emerging Computer Techniques In Stormwater and Flood Management. Am. Soc. Civ. Eng. New York.

Adams, B. J., H. G. Fraser, C. D. D. Howard, M. S. Hanafy. 1986. Meteorologic Data Analysis for Drainage System Design. J. Environ. Eng. 112(5): 827-848.

Morgan, E. C., M. Lackner, R. M. Vogel, L. G. Baise. 2011. Probability Distributions for Offshore Wind Speeds. Energy Conversion and Management. 52: 15-26.

Adams, B. J., F. Papa. 2000. Urban Storm Water Management Planning with Analytical Probabilistic Models. 1st Edn. John Wiley and Sons, New York. 53-79.

Guo, Y., B. J. Adams. 1998. Hydrologic Analysis of Urban Catchments with Event-based Probabilistic Models 1 .Runoff Volume. Water Resources Research. 34(12): 3421-3431.

Myung, I. J. 2003. Tutorial on Maximum Likelihood Estimation. Journal of Mathematical Psychology. 47: 90-100.

Burgueno, A., B. Codina, A. Redafio, J. Lorente. 1994. Basic Statistical Characteristics of Hourly Rainfall Amounts in Barcelona (Spain). Theor. Appl. Climatol. 49: 175-181.

Dunkerley. D. 2008. Identifying Individual Rain Events from Pluviograph Records: A Review with Analysis of Data from an Australian Drylandsite. Hydrol. Process. 22: 5024-5036.

Dan'azumi, S., S. Shamsudin, A. Aris. 2013. Development of Analytical Probabilistic Model Parameters for Urbanstormwater Management. Sains Malaysiana. 42(3): 325-332.

Dan'azumi, S., S. Shamsudin, A. Aris. 2013. Optimization of Pollution Control Performance of Wet Detention Ponds in Tropical Urban Catchments Using Particle Swarm Optimization. Journal of Hydroinformatics. 15(2): 529-539. doi:10.2166/hydro.2012.206.

Shamsudin, S., S. Dan'azumi, A. Aris, Z. Yusop. 2014. Optimum Combination of Pond Volume and Outlet Capacity of a Stormwater Detention Pond Using Particle Swarm Optimization. Urban Water Journal. 11(2): 127-136. doi: 10.1080/1573062X.2013.768680.

Suhaila, J., S. Mohd Deni, W. Z. Wan Zin, A. A. Jemain. 2010. Trends in Peninsular Malaysia Rainfall Data During the Southwest Monsoon and Northeast Monsoon Seasons, 1975–2004. Sains Malaysiana. 39(4): 533-542.

Downloads

Published

2015-06-24

Issue

Section

Science and Engineering

How to Cite

CHOOSING THE BEST FIT DISTRIBUTION FOR RAINFALL EVENT CHARACTERISTICS BASED ON 6H-IETD WITHIN PENINSULAR MALAYSIA. (2015). Jurnal Teknologi (Sciences & Engineering), 75(1). https://doi.org/10.11113/jt.v75.3058