A Review of Fingerprint Image Pre-processing
DOI:
https://doi.org/10.11113/jt.v69.3111Keywords:
Fingerprint image enhancement, image segmentation, feature extraction, gradient filter, Gaussian filterAbstract
Fingerprints are the most widely used form of human identification and verification due to their uniqueness and permanence. For that reason, many Automatic Fingerprint Identification Systems (AFIS) have been commercially produced and accepted by the international community. Though their performance is good, there is still room for improvement. One of the main concerns is poor fingerprint images that are caused by capturing devices. Thus, to improve the efficiency of AFIS, both image enhancement and feature extraction methods are required to be implemented. An effective feature extraction depends on the quality of its image whereby high image quality would normally produce genuine features. On the other hand, poor quality would lead to fake features that will result in false acceptance. This paper reviews several state-of-the-art methods of fingerprint image pre-processing including gray level normalization, noise removal and segmentation.
References
D. Maltoni and R. Cappelli. 2009. Advances in Fingerprint Modeling. Image Vis. Comput. 27(3): 258–268,
A. C. Newell. 2004. A Model for Fingerprint Formation. 68(October): 141–146.
D. Maltoni. 2005. A Tutorial on Fingerprint Recognition. 43–68.
C. Wu, Z. Shi, and V. Govindaraju. 2004. Fingerprint Image Enhancement Method Using Directional Median Filter. February.
L. Hong, S. Member, Y. Wan, and A. Jain. 1998. Fingerprint Image Enhancement: Algorithm and Performance Evaluation. 20(8): 777–789.
B. Kim, H. Kim, and D. Park. 2002. New Enhancement Algorithm for Fingerprint Images. 0–3.
Z. Shi and V. Govindaraju. 2006. A Chaincode Based Scheme for Fingerprint Feature Extraction. Pattern Recognit. Lett. 27(5): 462–468.
R. Bansal, P. Sehgal, and P. Bedi. 2011. Minutiae Extraction from Fingerprint Images-a Review. 12, Nov.
S. Chikkerur, A. N. Cartwright, and V. Govindaraju. 2007. Fingerprint Enhancement using STFT Analysis. 40: 198–211.
S. Chikkerur, A. N. Cartwright, and V. Govindaraju. 2007. Fingerprint Enhancement using STFT Analysis. Pattern Recognit. 40(1): 198–211.
M. Tico, E. Immonen, P. Ramo, P. Kuosmanen, and J. Saarinen. 2001. Fingerprint Recognition Using Wavelet Features. In ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196). 2: 21–24.
A. M. Bazen and S. H. Gerez. 2002. Systematic Methods for the Computation of the Directional Fields and Singular Points of Fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 24(7): 905–919.
S. Wang, S. Member, and Y. Wang. 2004. Fingerprint Enhancement in the Singular Point Area. 11(1):. 16–19.
A. Jain. 1998. Fingerprint Image Enhancement: Algorithm and Performance Evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20(8): 777–789.
S.-W. Lee and S. Z. Li, Eds. 2007. Advances in Biometrics. Berlin, Heidelberg: Springer Berlin Heidelberg.
D. Maltoni and R. Cappelli. 2009. Advances in Fingerprint Modeling. Image Vis. Comput. 27(3): 258–268.
A. M. Bazen and S. H. Gerez. 2001. Segmentation of Fingerprint Images. November.
C. Wu, S. Tulyakov, and V. Govindaraju. 2007. Robust Point-Based Feature Fingerprint Segmentation. 1095–1103.
M. S. Helfroush and M. Mohammadpour. 2009. Fingerprint Segmentation 1. 6(3): 303–308.
H. Fleyeh, D. Jomaa, and M. Dougherty. 2010. Segmentation of Low Quality Fingerprint Images. 1: 85–88.
B. M. Mehtre and B. Chatterjee. 1989. Segmentation of Fingerprint Images—A Composite Method. Pattern Recognit. 22(4): 381–385.
G. Journal, C. Science, and C. Meena. 2010. Rolled Fingerprint Segmentation 1. 9(5): 107–110.
N. K. Ratha, S. Chen, and A. K. Jain. 1995. Adaptive Flow Orientation-based Feature Extraction in Fingerprint Images. Pattern Recognit. 28(11): 1657–1672.
H. O. Nyongesa, S. M. Mohamed, and M. Mahmoud. 2004. Fast Robust Fingerprint Feature Extraction and Classification. 103–112.
F. Wang, X. Wang, and L. Xu. 2009. An Improved Fingerprint Segmentation Algorithm Based on Mean and Variance. In 2009 International Workshop on Intelligent Systems and Applications. 1–4.
D. Maio and D. Maltoni. 1997. Direct Gray-scale Minutiae Detection in Fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 19(1): 27–40.
D. Maio and D. Maltoni, “Direct Gray-Scale Minutiae Detection,†vol. 19, no. 1, 1997.
J. Yin, E. Zhu, X. Yang, G. Zhang, and C. Hu. 2007. Two Steps for Fingerprint Segmentation. Image Vis. Comput. 25(9): 1391–1403.
C. Yu, M. Xie, and J. Qi. 2008. An Effective Algorithm for Low Quality Fingerprint Segmentation. 2008 3rd Int. Conf. Intell. Syst. Knowl. Eng. 1081–1085.
E. Zhu, J. Yin, C. Hu, and G. Zhang. 2006. A Systematic Method for Fingerprint Ridge Orientation Estimation and Image Segmentation. Pattern Recognit. 39(8): 1452–1472.
L. Dong, G. Yu, P. Ogunbona, and W. Li. 2008. An Efficient Iterative Algorithm for Image Thresholding. Pattern Recognit. Lett. 29(9): 1311–1316.
C. Yu, M. Xie, and J. Qi. 2008. An Effective Algorithm for Low Quality Fingerprint Segmentation. 3–7.
J. Qi and M. Xie. 2008. Segmentation of Fingerprint Images Using the Gradient Vector Field. In 2008 IEEE Conference on Cybernetics and Intelligent Systems. 543–545.
T. Gu, S. Chen, X. Tao, and J. Lu. 2010. An Unsupervised Approach to Activity Recognition and Segmentation Based on Object-use Fingerprints. Data Knowl. Eng. 69(6): 533–544.
C. San Martin and S.-W. Kim, Eds., 2011. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg.
R. F. S. Teixeira and N. J. Leite. 2011. On Multiscale Directional Information. 38–46.
C. Wu, S. Tulyakov, and V. Govindaraju. 2007. Robust Point-Based Feature Fingerprint Segmentation. 1095–1103.
A. M. Bazen and S. H. Gerez. 2000. Directional Field Computation for Fingerprints Based on the Principal Component Analysis of Local Gradients. 1–7.
X. Zhan, Z. Sun, Y. Yin, and Y. Chen. 2005. Based on MCMC & GA. 06403010. 391–398.
A. M. Bazen and S. H. Gerez. 2001. Segmentation of Fingerprint Images. November.
S. Klein. 2002. Fingerprint Image Segmentation Based on Hidden Markov Models. October.
Y. Yin, X. Yang, X. Chen, and H. Wang. 2004. Method based on Quadric Surface Model for Fingerprint Image Segmentation. 5403: 317–324.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.