The Structural Properties of Trivalent Rare Earth Ions (Er3+) Doped Borotellurite Glass

Authors

  • E. S. Nurbaisyatul Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • K. Azman Faculty of Applied Sciences, Universtiti Teknologi MARA Pahang, 26400 Jengka, Pahang, Malaysia
  • H. Azhan Faculty of Applied Sciences, Universtiti Teknologi MARA Pahang, 26400 Jengka, Pahang, Malaysia
  • W. A. W. Razali Faculty of Applied Sciences, Universtiti Teknologi MARA Pahang, 26400 Jengka, Pahang, Malaysia
  • A. Noranizah Faculty of Applied Sciences, Universtiti Teknologi MARA Pahang, 26400 Jengka, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jt.v69.3115

Keywords:

Boretellurite glass, erbium, density, FTIR spectra

Abstract

Six samples of borotellurite glasses with system (80-x)TeO2- 10B2O3 - 10PbO - xEr2O3 (x=0.0, 0.5, 1.0, 1.5, 2.0, 2.5 mol%) have been prepared by using the conventional melt-quenching method. Some basic physical parameters such as density and molar volume were measured. The result reveals that the density and molar volume increases with the increases of mol% of Er2O3. The amorphous nature of the glass has been characterized using X-ray Diffraction (XRD) and all glasses are found to be amorphous in nature. The structure was analysed by FTIR spectroscopy. The FTIR spectra were recorded at room temperature in the frequency range from 650 to 4000  cm-1 using Attenuated Total Reflectance (ATR) method. From the IR results, the absorption bands were found to be in the range 667-669 cm-1, 710-712 cm-1, 880-887 cm-1, 981-997 cm-1 and 1190-1204 cm-1 which correspond to the stretching and bending vibrations mode. The absorption peaks around 1386-1388 cm-1 and 3741-3748 cm-1 which ascribed to the hydroxyl-metal bond and hydroxyl-hydrogen bond stretching vibration also have been observed. The FTIR results demonstrate that the existing of erbium in the composition leads to good structural properties thus creating potential for this glass in laser applications.

References

Ghoshal, S. K., Sahar, M. R., Dousti, M. R., Arifin, R., Rohani, M. S., & Hamzah, K. 2012. A Model for Enhanced Up-Conversion Luminescence in Erbium-Doped Tellurite Glass Containing Silver Nanoparticles. Advanced Materials Research. 501: 61–65.

Ersundu, a. E., Çelikbilek, M., & Aydin, S. 2012. Characterization of B2O3 and/or WO3 Containing Tellurite Glasses. Journal of Non-Crystalline Solids. 358(3): 641–647.

Lin, J., Huang, W., Sun, Z., Ray, C. S., & Day, D. E. 2004. J. Non-Cryst. Solids. 336: 189–194.

Rada, S., Culea, E., Rada, M., Pascuta, P., &Maties, V. 2009. Structural and Electronic Properties of Telluriteglasses. J Mater Sci. 44: 3235–3240.

Bilir, G., Mustafaoglu, N., Ozen, G., & DiBartolo, B. 2011. Characterization of Emission Properties of Er3+ ions in TeO2-CdF2-WO3 Glasses. Spectrochimica Acta Part A. 83: 314–321.

El-Mallawany R. 1998. Mater.Chem. Phys. 63: 109.

Annapurna, K., Chakrabarti, R.,&Buddhudu S. 2007. Absorption and Emission Spectral Analysis of Pr3+: Tellurite Glasses. J Mater Sci. 42: 6755–6761.

Guerra, J. D. S., Hathenher, C. R., Lourenco, S. A. & Dantas, N.O., 2010. Investigation of the Physical Properties of New PZT Modified Tellurium Oxide (TeO2-B2O3-PbO2: TBP) Glasses. Journal of Non-Crystalline Solids. 356: 2350–2354.

Azevedo, J., Coelho, J., Hungerford, G., & Sooraj Hussain, N. 2010. Lasing Ttransition (4F3/2→4I11/2) at 1.06 μm in Neodymium Oxide Doped Lithium Borotellurite Glass. Physica B: Condensed Matter. 405(22): 4696–4701.

Xu, S., Fang, D., Zhang, Z., & Jiang, Z. 2005. Unconversion Luminescence and Mechanisms of Tm3+/Yb3+codopedoxyhalidetellurite Glasses. J. Solid State Chem. 178: 1817.

Azianty, S., Yahya, a. K., & Halimah, M. K. 2012. Effects of Fe2O3 Replacement of ZnO on Elastic and Structural Properties of 80TeO2–(20−x)ZnO–xFe2O3 Tellurite Glass System. Journal of Non-Crystalline Solids. 358(12–13): 1562–1568.

Halimah M. K., Daud W. M., Sidek H. A. A. 2010. Elastic Properties of TeO2-B2O3-Ag2O Glasses. Ionics. 16: 807–813.

El-Deen, L. M. S., Al Salhi, M. S., & Elkholy, M. M. 2008.IR and UV Spectral Studiesfor Rare Earths-doped Tellurite Glasses. Journal of Alloys and Compounds. 465: 333–339.

Chagraoui A., Yakine I., Tairi A., Moussaoui A., Talbi M., Naji M., 2011. Glasses Formation, Characterization, and Crystal-Structure Determination in the Bi2O3-Sb2O3-TeO2 System Prepared in an Air. J Mater Sci. 46: 5439–5446.

Ersundu, a. E., Çelikbilek, M., Solak, N., & Aydin, S. 2011. Glass Formation Area and Characterization Studies in the CdO–WO3–TeO2 Ternary System. Journal of the European Ceramic Society. 31(15): 2775–2781. doi:10.1016/j.jeurceramsoc.2011.07.027,

Pal, I., Agarwal, A., Sanghi, S., Aggarwal, M. P. 2012. Structure and Optical Absorption of Sm3+ and Nd3+ Ions in Cadmium Bismuth Borate Glasses with Large Radiative Transition Probabilities. Optical Materials. 34: 1171–1180.

Selvaraju, K., & Marimuthu, K. 2012. Structural and Sspectroscopic Studies on Concentration Dependent Er3+ Doped Boro-tellurite Glasses. Journal of Luminescence. 132: 1171–1178.

Pavani, P. G., Sadhana, K., & Mouli, V. C. 2011. Optical, Physical and Structural Studies of Boro-zinc Tellurite Glasses. Physica B. 406: 1242–1247.

Raju, K. V., Sailaja, S., Raju, C. N., & Reddy, B. S. 2011. Optical Characterization of Eu3+ and Tb3+ Ions Doped Cadmium Lithium Aluminofluoroborotellurite Glasses. Spectrochimicaacta. Part A, Molecular and biomolecular Spectroscopy. 79(1): 87–91.

Rada, S., Dehelean, a., Stan, M., Chelcea, R., & Culea, E. 2011. Structural Studies on Iron–tellurite Glasses Prepared by Sol–gel Method. Journal of Alloys and Compounds. 509(1): 147–151.

Yousef, E. S. 2013. Er3+ Ions Doped Tellurite Glasses with High Thermal Stability, Elasticity, Absorption Intensity, Emission Cross Section and Their Optical Application. Journal of Alloys and Compounds. 561: 234–240.

Ciorcas, F., Mendiratta, S. K., Ardelean, I., & Valente, M. A. 2001. Physical Journal B Structural and magnetic studies of CuO-TeO2 and CuO-TeO2 -B2O3 glasses. 240: 235–240.

Kirdsiri, K., Kaewkhao, J., Pokaipisit, a., Chewpraditkul, W., & Limsuwan, P. 2009. Gamma-rays Shielding Properties of xPbO:(100−x)B2O3 Glasses System at 662keV. Annals of Nuclear Energy. 36(9): 1360–1365.

Capanema, W. A., Yukimitu, K., Moraes, J. C. S., Santos, F. A., Figueiredo, M. S., Sidel, S. M., & Medina, A. N. 2011. The Structure and Optical Dispersion of the Refractive Index of Tellurite Glass. Optical Materials. 33(11): 1569–1572.

Saddeek, Y. B., Afifi, H. A., & Abd El-Aal, N. S. 2007. Interpretation of Mechanical Properties and Structure of TeO2-Li2O3-B2O3 Glasses. Physica B. 398: 1–7.

Maheshvaran, K., Arunkumar, S., Sudarsan, V., Natarajan, V., & Marimuthu, K. 2013. Structural and Luminescence Studies on Er3+/Yb3+ Co-Doped Boro-tellurite Glasses. Journal of Alloys and Compounds. 561: 142–150.

Nie.Q., Li, X., Dai, S., Xu, T., Jin, Z., & Zhang, X. 2008. Journal of Luminescence. 128: 135–141.

Damas, P., Coelho, J., Hungerford, G., & Hussain, N. S. 2012. Structural Studies of Lithium Borotelluriteglasses Doped with Praseodymium and Samarium Oxides. Materials Research Bulletin. 47(11): 3489–3494.

Sahar, M. R., & Nordin, N. 1997. TeO2-ZnO-ZnCl2 Glasses for IR Transmission. J. Non-Cryst. Solids. 213&214: 164–167.

Kobayashi, K., & Sasaki H. 1999. Visible Rays Cutoff and Infrared Transmission Properties of TeO2-GeO2-V2O5-PbF2 Glass System. J. European Cer. Soc. 19: 637–639.

Downloads

Published

2014-06-20

How to Cite

The Structural Properties of Trivalent Rare Earth Ions (Er3+) Doped Borotellurite Glass. (2014). Jurnal Teknologi, 69(2). https://doi.org/10.11113/jt.v69.3115