Integral Equation for the Ahlfors Map on Multiply Connected Regions
DOI:
https://doi.org/10.11113/jt.v73.3192Keywords:
Ahlfors map, adjoint Neumann kernel, Generalized Neumann kernel, GMRES, fast multipole methodAbstract
This paper presents a new boundary integral equation with the adjoint Neumann kernel associated with  where  is the boundary correspondence function of Ahlfors map of a bounded multiply connected region onto a unit disk. The proposed boundary integral equation is constructed from a boundary relationship satisfied by the Ahlfors map of a multiply connected region. The integral equation is solved numerically for  using combination of Nystrom method, GMRES method, and fast multiple method. From the computed values of  we solve for the boundary correspondence function  which then gives the Ahlfors map. The numerical examples presented here prove the effectiveness of the proposed method.
References
Krantz, S.G. 2006. Geometric Function Theory: Explorations in Complex Analysis, Birkhauser, Boston.
Tegtmeyer, T.J. and Thomas, A.D. 1999. The Ahlfors map and Szego kernel for an Annulus, Rocky Mountain J.Math. 29(2): 709–723. doi:10.1216/rmjm/1181071660
Kerzman, N. and Stein, E. M. 1978. The Cauchy kernel, the Szegö kernel, and the Riemann mapping function. Math. Ann. 236(1): 85–93.
Kerzman, N. and Trummer, M. R. 1986. Numerical conformal mapping via the Szegö kernel. J. Comput. Appl. Math.. 14(1): 111–123. DOI: 10.1016/0377-0427(86)90133-0
Lee, B. and Trummer, M. R. 1994. Multigrid conformal mapping via the Szego kernel. Electron. Trans. Numer. Anal. 2: 22–43.
Nasser, M.M.S. 2011. Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebeʼs canonical slit domains. J. Math. Anal. Appl. 382: 47–56.
DOI: 10.1016/j.jmaa.2011.04.030
Nasser, M.M.S. 2013. Numerical conformal mapping of multiply connected regions onto the fifth category of Koebe’s canonical slit regions. J.Math. Anal. Appl. 398: 729–743.
DOI: 10.1016/j.jmaa.2012.09.020
Nasser, M.M.S. 2009. A boundary integral equation for conformal mapping of bounded multiply connected regions. Comput. Methods Funct. Theory. Vol. 9: 127–143.
Nasser, M.M.S. 2009. Numerical conformal mapping via a boundary integral equation with the generalized Neumann kernel. SIAM J. Sci. Comput. 31(3): 1695–1715. DOI:10.1137/070711438
Nasser, M. M. S. and Al-Shihri, F. A. A. 2013. A fast boundary integral equation method for conformal mapping of multiply connected regions. SIAM J. Sci. Comput. 35(3): A1736-A1760. DOI:10.1137/120901933
O'Donnell, S. T. and Rokhlin, V. 1989. A fast algorithm for the numerical evaluation of conformal mappings. SIAM J. Sci. Stat. Comput. 10: 475–487. DOI:10.1137/0910031
Sangawi, A.W.K. 2014. Spiral slits map and its inverse of bounded multiply connected regions. Applied Mathematics and Computation. 228: 520–530. DOI: 10.1016/j.amc.2013.12.007
Sangawi, A.W.K., Murid, A.H.M. and Nasser, M.M.S. 2011. Linear integral equations for conformal mapping of bounded multiply connected regions onto a disk with circular slits. Applied Mathematics and Computation. 218(5): 2055–2068. DOI: 10.1016/j.amc.2011.07.018
Sangawi, A.W.K. 2012. Boundary Integral Equations For The Conformal Mappings Of Bounded Multiply Connected Regions. Universiti Teknologi Malaysia: PhD Thesis.
Sangawi, A.W.K., Murid, A.H.M. 2013. Annulus with Spiral Slits Map and its Inverse of Bounded Multiply Connected Regions. International Journal of Science & Engineering Research. 4(10): 1447–1454.
Yunus, A.A.M., Murid A.H.M. and Nasser M.M.S. 2012. Numerical Conformal Mapping of Unbounded Multiply Connected Regions onto Circular Slit Regions. Malaysian Journal of Fundamental Applied Sciences 8(1): 38–43.
Greengard, L. and Gimbutas, Z. 2012. FMMLIB2D: A MATLAB Toolbox For Fast Multipole Method In Two Dimensions Version 1.2, http://www.cims.nyu.edu/cmcl/fmm2dlib.html.
Bell, S.R.. 1986. Numerical computation of the Ahlfors map of a multiply connected planar domain. J. Math. Anal. Appl. 120: 211–217. DOI:10.1016/0022-247X(86)90211-8
Murid, A.H. and Razali, M.R.M. 1999. An integral equation method for conformal mapping of doubly connected regions. Matematika. 15(2): 79–93.
Nasser, M.M.S. and Murid, A.H.M. 2013. A boundary integral equation with the generalized Neumann kernel for the Ahlfors map. Clifford Anal. Clifford Algebr. Appl, 2(4): 307–312 .
Tegtmeyer, T.J. 1998. The Ahlfors Map And Szego Kernel In Multiply Connected Domains. Purdue University: PhD Thesis.
Wegmann, R., Murid, A.H.M. and Nasser, M.M.S. 2005. The Riemann–Hilbert problem and the generalized Neumann kernel. Journal Of Computational And Applied Mathematics. 182(2): 388–415. DOI: 10.1016/j.cam.2004.12.019
Wegmann, R. and Nasser, M.M.S. 2008. The Riemann–Hilbert problem and the generalized Neumann kernel on multiply connected regions. Journal of Computational and Applied Mathematics. 214: 36–57. DOI: 10.1016/j.cam.2007.01.021
Nasser, M.M.S., Murid, A.H.M., Ismail, M. and Alejaily, E.M.A. 2011. Boundary integral equations with the generalized Neumann kernel for Laplace’s equation in multiply connected regions. Applied Mathematics and Computation. 217(9): 4710–4727. DOI: 10.1016/j.amc.2010.11.027
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.