Titanium Dioxide-Supported Sulfonated Low Rank Coal as Catalysts in the Oxidation of Styrene with Aqueous Hydrogen Peroxide

Authors

  • Mukhamad Nurhadi Department of Chemical Education, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia
  • Jon Efendi Department of Chemistry, Faculty of Mathematics and Science, Universitas Negeri Padang, Jln. Prof. Dr. Hamka, Air Tawar, Padang 25131, Indonesia
  • Lee Siew Ling Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Teuku Meurah Indra Mahlia Department of Chemistry, Faculty of Mathematics and Science, Universitas Negeri Padang, Jln. Prof. Dr. Hamka, Air Tawar, Padang 25131, Indonesia
  • Ho Chin Siong Low Carbon Asia Research Center, Faculty of Built Environment, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Lai Sin Yuan Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Sheela Chandren Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Hadi Nur Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v69.3208

Keywords:

Styrene, oxidation, coal, sulfonation, benzaldehyde, phenyl acetadehyde, styrene oxide

Abstract

Titanium dioxide supported sulfonated low rank coal catalyst possesses high catalytic activity in liquid phase oxidation of styrene with aqueous hydrogen peroxide at room temperature. The catalysts were prepared by sulfonation with concentrated sulfuric acid and impregnation of titanium dioxide (500-2500 µmol). The effect of titanium dioxide impregnation and calcinations on the catalysts were studied by X-ray diffraction, UV-vis diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, BET surface area, field emission scanning electron microscopy and hydrophobicity measurement. The catalytic activity of the catalysts in the oxidation of styrene by aqueous H2O2 without calcination increased when the amount of titanium dioxide increased. Meanwhile, the catalytic activity of the catalyst calcined at 500oC for 2 h was lower than before calcination. It is suggested that the agglomeration of titanium dioxide and hydrophobicity play important role in the catalytic activity of titanium dioxide-supported sulfonated low rank coal in the oxidation of styrene with aqueous H2O2. 

References

J. Yu, A. Tahmasebi, Y. Han, F. Yin, X. Li. 2013. Fuel Proc. Tech. 106 9–20.

T. Kabe, A. Ishihara, E.W. Qian, I.P. Sutrisna, Y. Kabe. 2004. Coal and Coal-Related Compounds Structures, Reactivity and Catalytic Reaction. Kodansha, Tokyo.

W. Geng, T. Nakajima, H. Takanashi, A. Ohki. 2009. Fuel. 88: 139–144.

K. Nakajima, M. Okamura, J.N. Kondo, K. Domen, T. Tatsumi, S. Hayashi, M. Hara. 2009. Chem. Mater. 21: 186–193.

C.N. Satterfield. 1980. Heterogeneous Catalysis in Practice. McGraw-Hill, Inc. New York.

J. Qiu, Y. Li, Y. Wang, C. Liang, T. Wang, D. Wang. 2003. Carbon. 41: 767–772.

W. Zhan, Y. Guo, Y. Wang, X. Liu, Y. Guo, Y. Wang, Z. Zhang, G. Lu. 2007. J. Phys. Chem. B. 111: 12103–12110.

J.M. Fraile, J.I. Garcia, J.A. Mayoral, E. Vispe. 2000. J. Catal. 189: 40–51.

G.J. Wang, G.Q. Liu, Z. Yang, Z.W. Liu, Y.W. Liu, S.F. Chen, L. Wang. 2008. Appl. Surf. Sci. 255: 2632–2640.

C. Liu, J. Huang, D. Sun, Y. Zhou, X. jing, M. Du, H. Wang, Q. Li. 2013. Appl. Catal. A. 459: 1–7.

S. Lubis, L. Yuliati, S.L. Lee, I. Sumpono, H. Nur. 2012. Chem. Eng. J. 209: 486–493.

A.K. Mittal, C. Venkobachar. 1996. Ind. Eng. Chem. Res. 35: 1472–1474.

W. Zhan, Y. Guo, Y. Wang, Y. Guo, X. Liu, Y. Wang, Z. Zhang, G. Lu. 2009. J. Phys. Chem. C. 113: 7181–7185.

L. Peng, A. Philippaerts, X. Ke, J.V. Noyen, F.D. Clippel, G.V. Tendeloo, P.A. Jacobs, B.F. Sels. 2010. Catal. Today. 150: 140–146.

S. Suganuma, K. Nakajima, M. Kitano, H. Kato, A. Tamura, H. Kondo, S. Yanagawa, S. Hayashi, M. Hara. 2011. Microporous Mesoporous Mater. 143: 443–450.

G. Chen, B. Fang. 2011. Bioresour. Technol. 102: 2635–2640.

J.A. Sanches, D.L. Hernandez, J.A. Moreno, F. Mondragon, J.J. Fernandez. 2011. Appl. Catal. A. 405: 55–60.

E. Duprey, P. Beaunier, M.A. Spingual-Huet, F.B. Verduraz, J. Fraissard, J.M. Manoli, J.M. Bregeault. 1997. J. Catal. 165: 22–32.

J. M. R. Gallo, H. O. Pastore, U. Schuchardt. 2006. J. Catal. 243: 57–63

M.R. Prasad, M.S. Hamdy, G. Mul, E. Bouwman, E. Drent. 2008. J. Catal. 260: 288–294.

E. M. Flanigen, in: J. A. Rabo (Ed.). 1976. Zeolite Chemistry and Catalysis. 171, ACS Monograph.

X. Li, B. Shen, C. Xu. 2010. Appl. Catal. A. 375: 222–229.

M. Sasidharan, R. Kumar. 2003. J. Catal. 220: 326–332.

H. Nur. 2006. Mater. Scin. Eng. 133: 49–54

J. M. Fraile, J.I. Garcia, J.A. Mayoral, E. Vispe. 2000. J. Catal. 189: 40–51.

Downloads

Published

2014-07-02

How to Cite

Titanium Dioxide-Supported Sulfonated Low Rank Coal as Catalysts in the Oxidation of Styrene with Aqueous Hydrogen Peroxide. (2014). Jurnal Teknologi (Sciences & Engineering), 69(5). https://doi.org/10.11113/jt.v69.3208