Electrodeposited Germanium On Silicon Substrate Using A Mixture Of Germanium Tetrachloride And Propylene Glycol

Authors

  • Mastura Shafinaz Zainal Abidin Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Shahjahan Shahjahan Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Semarak, Kuala Lumpur 54100, Malaysia
  • Mohamad Rusop Mahmood Faculty of Electrical Engineering, Universiti Teknologi MARA, Selangor, Shah Alam 40450, Malaysia
  • Abdul Manaf Hashim Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Semarak, Kuala Lumpur 54100, Malaysia

DOI:

https://doi.org/10.11113/jt.v72.3225

Keywords:

Germanium, silicon, current density, electrochemical deposition

Abstract

We report the deposition of germanium (Ge) film on silicon (Si) substrate by a simple and low cost electrochemical deposition using a mixture of germanium tetrachloride (GeCl4) and propylene glycol (C3H8O2). The effects of deposition environment and applied current density on the properties of deposited Ge films were investigated. Ge film containing germanium dioxide (GeO2) microclusters was obtained for deposition in air-exposed environment while high purity Ge film with no impurity detectable by energy-dispersive x-ray spectroscopy (EDS) was obtained in nitrogen (N2) filled environment. In Raman spectra, N2 exposed sample shows smaller full width at half maximum (FWHM) values of Ge-Ge peak compared to air exposed sample, thereby indicating better crystallinity of Ge. Relatively flat and smooth Ge surfaces with the average roughnesses of 0.828-1.069 nm were obtained for all tested current densities of 10, 20 and 60 mAcm-2. The mean Ge crystallite grain sizes were determined to be in the range of 2-4 nm. In qualitative voltammetry study, two reduction peaks were observed in cyclic voltammograms measurement which confirms that the deposition of Ge at cathode occurs via two reduction processes. It is expected that the impurity-free Ge film on Si is promising for various device application towards heterogeneous integration on Si platform.

References

Thompson, S.E., and S. Parthasarathy. 2006. Moore’s law: the future of Si microelectronics. Mater. Today. 20 – 25.

Murphy, B.T., D.E. Haggan, and W.W. Troutman. 2000. From circuit miniaturization to the scalable IC. Proc. IEEE. 88: 691–703.

Theis, T.N. 2003. Beyond the silicon transistor: personal observations. Comput. Sci. Eng. 5: 25–29.

Chau, R., M. Doczy, B. Doyle, S. Datta, G. Dewey, J. Kavalieros, B. Jin, M. Metz, A. Majumdar, and M. Radosavljevic. 2004. Advanced CMOS transistors in the nanotechnology era for high-performance, low-power logic applications. Proceedings of 7th International Conference on Solid-State and Integrated Circuits Technology. 21: 26–30.

Gehring, A., and S. Selberherr. 2004. Gate leakage models for device simulation. Proceedings of 7th International Conference on Solid-State and Integrated Circuits Technology. 972: 971–976.

Timp, G., K.K. Bourdelle, J.E. Bower, F.H. Baumann, T. Boone, R. Cirelli, K. Evans-Lutterodt, J. Garno, A. Ghetti, H. Gossmann, M. Green, D. Jacobson, Y. Kim, R. Kleiman, F. Klemens, A. Kornlit, C. Lochstampfor, W. Mansfield, S. Moccio, D.A. Muller, I.E. Ocola, M.I. O'Malley, J. Rosamilia, J. Sapjeta, P. Silverman, T. Sorsch, D.M. Tennant, W. Timp, and B.E. Weir. 1998. Progress toward 10 nm CMOS devices. Technical Digest in International Electron Devices Meeting. IEDM. 615–618.

Ng, K.K., S.A. Eshraghi, and T.D. Stanik. 1993. An improved generalized guide for MOSFET scaling. IEEE Trans. Electron Devices. 40: 1895–1897.

Wistey, M., U. Singisetti, G. Burek, E. Kim, B.J. Thibeault, A. Nelson, J. Cagnon, Y.-J. Lee, S.R. Bank, S. Stemmer, P.C. McIntyre, A.C. Gossard, and M.J. Rodwell. 2009. III-V/Ge Channel Engineering for Future CMOS. ECS Trans. 19: 361–372.

Takagi, S., M. Sugiyama, T. Yasuda, and M. Takenaka. 2009. Ge/III-V Channel Engineering for Future CMOS. ECS Trans. 19: 9–20.

Nayfeh, A., C. Chi On, T. Yonehara, and K.C. Saraswat. 2005. Fabrication of high-quality p-MOSFET in Ge grown heteroepitaxially on Si. IEEE Electron Device Lett. 26: 311–313.

Zhiyuan, C., J.-S. Park, J. Bai, L. Jizhong, J. Hydrick, J. Fiorenza, and A. Lochtefeld. 2008. Aspect ratio trapping heteroepitaxy for integration of germanium and compound semiconductors on silicon. 9th International Conference on Solid-State and Integrated-Circuit Technology. ICSICT 2008. 1425–1428.

Ahmed, A.H.Z., and R.N. Tait. 2005. Characterization of an amorphous GexSi1-xOy microbolometer for thermal imaging applications. IEEE Trans. Electron Devices. 52: 1900–1906.

Jawad, M.J., M.R. Hashim, and N.K. Ali. 2010. Hydrogen sensor based on Schottky barriers of Pd/GeO2 using a low cost electrochemically deposited thin GeO2 film. 2010 International Conference on Enabling Science and Nanotechnology (ESciNano). 1–2.

Khan, M.A., M. Farhan, and T.P. Hogan. 2009. Low temperature synthesis of germanium oxide nanowires by thermal evaporation of germanium in an oxidizing environment. Nanotechnology Materials and Devices Conference. NMDC '09. IEEE. 5–8.

Wang, K.L., C. Dongho, L. Jianlin, and C. Chen. 2007. Ge/Si Self-Assembled Quantum Dots and Their Optoelectronic Device Applications. Proc. IEEE. 95: 1866–1883.

Gao, Q., J.H. Kang, H.H. Tan, H.E. Jackson, L.M. Smith, J.M. Yarrison-Rice, J. Zou, and C. Jagadish. 2011. Growth and characterization of compound semiconductor nanowires on Si. 11th IEEE Conference on Nanotechnology (IEEE-NANO). 44–47.

Cantoro, M., C. Merckling, S. Jiang, W. Guo, N. Waldron, H. Bender, A. Moussa, B. Douhard, W. Vandervorst, M.M. Heyns, J. Dekoster, R. Loo, and M. Caymax. 2012. Towards the Monolithic Integration of III-V Compound Semiconductors on Si: Selective Area Growth in High Aspect Ratio Structures vs. Strain Relaxed Buffer-Mediated Epitaxy. Compound Semiconductor Integrated Circuit Symposium (CSICS). IEEE. 1–4.

Datta, S., and R. Chau. 2005. Silicon and III-V nanoelectronics. International Conference on Indium Phosphide and Related Materials. 7–8.

Hill, R.J.W., A. Baraskar, C. Park, J. Barnett, P. Majhi, and R. Jammy. 2010. Compound semiconductors on silicon for future generation VLSI. 2010 IEEE International SOI Conference (SOI). 1–3.

Caymax, M., C. Merckling, W. Gang, T. Orzali, G. Weiming, W. Vandervorst, J. Dekoster, N. Waldron, and A. Thean. 2012. Epitaxy of III-V based channels on Si and transistor integration for 12-10nm node CMOS. 2012 International Conference on Indium Phosphide and Related Materials (IPRM). 159–162.

Boucart, K., and A.M. Ionescu. 2007. Double-Gate Tunnel FET With High-k Gate Dielectric. IEEE Trans. Electron Devices, 54: 1725–1733.

Veksler, D.B., A.V. Muraviev, T.A. Elkhatib, K.N. Salama, and M.S. Shur. 2007. Plasma wave FET for sub-wavelength THz imaging. 2007 International Semiconductor Device Research Symposium. 1–2.

Hashim, A.M., S. Kasai, and H. Hasegawa. 2008. Observation of first and third harmonic responses in two-dimensional AlGaAs/GaAs HEMT devices due to plasma wave interaction. Superlattices Microstruct. 44: 754–760.

Liu, Y., K. Gopalafishan, P.B. Griffin, K. Ma, M.D. Deal, and J.D. Plummer. 2004. MOSFETs and high-speed photodetectors on Ge-on-insulator substrates fabricated using rapid melt growth. IEDM Technical Digest. IEEE International Electron Devices Meeting. 1001–1004.

Abidin, M.S.Z., A.M. Hashim, M.E. Sharifabad, S.F.A. Rahman, and T. Sadoh. 2011. Open-Gated pH Sensor Fabricated on an Undoped-AlGaN/GaN HEMT Structure. Sensors. 11: 3067–3077.

Mazuina, M., M. Fong Yee, and H. Abdul Manaf. 2008. The Sensing Performance of Undoped-AlGaN/GaN/Sapphire HEMT Hydrogen Gas Sensor. Asia International Conference on Modelling & Simulation. 985–986.

Itabashi, S., H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, K. Yamada, Y. Ishikawa, and K. Wada. 2010. Integration of optical devices based on Si, Ge and SiOx. 2010 7th IEEE International Conference on Group IV Photonics (GFP). 48–50.

Wang, J., and S. Lee. 2011. Ge-Photodetectors for Si-Based Optoelectronic Integration. Sensors. 11: 696–718.

Herman, M.A. 1997. Silicon-germanium heterostructures: properties, technology, and application in infrared detectors. Opto-Electr. Rev. 5: 191–204.

Michel, J., J. Liu, and L.C. Kimerling. 2010. High-performance Ge-on-Si photodetectors. Nat. Photonics 4: 527–534.

Claeys, C., and E. Simoen. 2007. Germanium-Based Technologies: From Materials to Devices. Elsevier Science. Amsterdam.

Eastman, L.F. 1983. Summary Abstract: Compound semiconductor structures for high speed, high frequency devices. J. Vac. Sci. Technol., B. 1: 455–455.

Trew, R.J., M.W. Shin, V. Gatto. 1996. Wide bandgap semiconductor electronic devices for high frequency applications. Technical Digest of 18th Annual Gallium Arsenide Integrated Circuit (GaAs IC) Symposium. 6–9.

Hashim, A.M., F. Mustafa, S.F.A. Rahman, and A.R.A. Rahman. 2011. Dual-Functional On-Chip AlGaAs/GaAs Schottky Diode for RF Power Detection and Low-Power Rectenna Applications. Sensors. 11: 8127–8142.

McComber, K.A., L. Jifeng, J. Michel, and L.C. Kimerling. 2009. Low-temperature germanium ultra-high vacuum chemical vapor deposition for back-end photonic integration. 6th IEEE International Conference on Group IV Photonics. GFP '09. 137–139.

McComber, K.A., X. Duan, J. Liu, J. Michel, and L.C. Kimerling. 2012. Single-Crystal Germanium Growth on Amorphous Silicon. Adv. Func. Mater. 22: 1049–1057.

Fujinaga, K. 1991. Low-temperature heteroepitaxy of Ge on Si by GeH4 in gas low pressure chemical vapor deposition. J. Vac. Sci. Technol., B. 9: 1511–1516.

Barski, A., M. Derivaz, J.L. Rouviere, and D. Buttard. 2000. Epitaxial growth of germanium dots on Si(001) surface covered by a very thin silicon oxide layer. Appl. Phys. Lett. 77: 3541–3543.

Yang, R., K. Li, G. Li, C. Peng, and Y. Li. 2001. The properties of epitaxial pure germanium films on silicon substrate. Proceedings of 6th International Conference on Solid-State and Integrated-Circuit Technology. 631: 634–636.

Larrson, M., A. Eflving, M.I. Hussain, P.O. Holtz, and W.-X. Ni. 2004. Luminescence properties of Ge quantum dots produced by MBE at different temperatures. First IEEE International Conference on Group IV Photonics. 124–126.

Huang, S., Z. Xia, H. Xiao, J. Zheng, Y. Xie, and G. Xie. 2009. Structure and property of Ge/Si nanomultilayers prepared by magnetron sputtering. Surf. Coat. Technol. 204: 558–562.

Huang, Q., S.W. Bedell, K.L. Saenger, M. Copel, H. Deligianni, and L.T. Romankiwa. 2007. Single-Crystalline Germanium Thin Films by Electrodeposition and Solid-Phase Epitaxy. Electrochem. Solid-State Lett. 10: D124–D126.

Going, R., L. Tsu-Jae King, and M.C. Wu. 2013. Rapid melt grown germanium gate photoMOSFET on a silicon waveguide. IEEE Photonics Conference (IPC). 38–39.

Lokhande, C.D., and S.H. Pawar. 1989. Electrodeposition of Thin Film Semiconductors. Phys. Status Solidi A. 111: 17–40.

Endres, F., and S.Z.E. Abedin. 2002. Nanoscale electrodeposition of germanium on Au(111) from an ionic liquid: an in situ STM study of phase formation. Phys. Chem. Chem. Phys. 4: 1640–1657.

Endres, F. 2004. Ionic Liquids: Promising Solvents for Electrochemistry. Z. Phys. Chem. 218: 255–283.

Mukhopadhyay, I. and W. Freyland. 2003. Thickness induced metal–nonmetal transition in ultrathin electrodeposited Ge films. Chem. Phys. Lett. 377: 223–228.

Szekely, G. 1951. Electrodeposition of Germanium. J. Electrochem. Soc. 98: 318–324.

Szekely, G. 1951. Electroplating of Germanium. US Patt. 2.

Saitou, M., K. Sakae, and W. Oshikawa. 2002. Evaluation of crystalline germanium thin films electrodeposited on copper substrates from propylene glycol electrolyte. Surf. Coat. Technol. 162: 101–105.

Freyland, W., C.A. Zell, S.Z.E. Abedin, and F. Endres. 2003. Nanoscale electrodeposition of metals and semiconductors from ionic liquids. Electrochim. Acta. 48: 3053–3061.

Yan, W.X., D. Lian, D.G. Fang, W. Peng, W. Wei, W.L. Duo, and Q. Yong. 2009. Synthesis and characterization of nano/microstructured crystalline germanium dioxide with novel morphology. Chin. Sci. Bull. Science in China Press. 2810–2813.

Jawad, M.J., M.R. Hashim, and N.K. Ali. 2011. Synthesis, Structural, and Optical Properties of Electrochemically Deposited GeO2 on Porous Silicon. Electrochem. Solid-State Lett. 14: D17–D19.

Strain measurements of a Si cap layer deposited on a SiGe substrate determination of Ge content, H.J. Yvon, (Ed.). from http://www.intercovamex.com/biblioteca_de_aplicaciones/SEMICONDUCTORES/Mediciones%20de%20tension%20de%20de%20una%20capa%20de%20Si%20depositada%20en%20un%20sustrato%20de%20SiGe.%20Determinacion%20del%20contenido%20de%20Ge.pdf

Jawad, M.J., M.R. Hashim, N.K. Ali, E.P. C´orcoles, and M.E. Sharifabad. 2012. An Alternative Method to Grow Ge Thin Films on Si by Electrochemical Deposition for Photonic Applications. J. Electrochem. Soc. 159: D124–128.

Miyao, M., T. Tanaka, K. Toko, and M. Tanaka. 2009. Giant Ge-on-Insulator Formation by Si–Ge Mixing-Triggered Liquid-Phase Epitaxy. Appl. Phys. Express. 2: 045503.

Mestanza, S.N.M., J.W. Swart, I. Doi, and N.C. Frateschi. 2006. Synthesis of Ge Nanocrystals Grown by Ion Implantation and Subsequent Annealing. Proceedings of the 6th International Caribbean Conference on Devices, Circuits and Systems. 151–155.

Rolland, P., V. Carlino, and R. Vane. 2004. Improved Carbon Analysis with Evactron Plasma Cleaning. Microsc. Microanal. 10: 964–965.

Hashim, A.M., M. Anisuzzaman, S. Muta, T. Sadoh, and M. Miyao. 2012. Epitaxial-template structure utilizing Ge-on-insulator stripe arrays with nano-spacing for advanced heterogeneous integration on Si platform. Jpn. J. Appl. Phys. 51: 06FF04.

Toko, K., T. Sakane, T. Tanaka, T. Sadoh, and M. Miyao. 2009. Defect-free single-crystal Ge island arrays on insulator by rapid-melting-growth combined with seed-positioning technique. Appl. Phys. Lett. 95: 112107–112103.

Abidin, M.S.Z., R. Matsumura, M. Anisuzzaman, J.-H. Park, S. Muta, M.R. Mahmood, T. Sadoh, and A.M. Hashim. 2013. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100). Materials. 6: 5047–5057.

Sadoh, T., K. Toko, M. Kurosawa, T. Tanaka, T. Sakane, Y. Ohta, N. Kawabata, H. Yokoyama, and M. Miyao. 2011. SiGe-Mixing-Triggered Rapid-Melting-Growth of High-Mobility Ge-On-Insulator. Key Eng. Mater. 470: 8–13.

Liu, F.Q., Z.G. Wang, G.H. Li, and G.H. Wang. 1998. Photoluminescence from Ge clusters embedded in porous silicon. J. Appl. Phys. 83: 3435–3437.

Abd Rahim, A.F., M.R. Hashim, M. Rusop, N.K. Ali, and R. Yusuf. 2012. Room temperature Ge and ZnO embedded inside porous silicon using conventional methods for photonic application. Superlattices Microstruct. 52: 941–948.

Martineau, F., K. Namur, J. Mallet, F. Delavoie, F. Endres, M. Troyon, and M. Molinari. 2009. Electrodeposition at room temperature of amorphous silicon and germanium nanowires in ionic liquid. IOP Conf. Series: Materials Science and Engineering Symposium K, E-MRS 2009 Spring Meeting. 012012.

Downloads

Published

2014-12-29

Issue

Section

Science and Engineering

How to Cite

Electrodeposited Germanium On Silicon Substrate Using A Mixture Of Germanium Tetrachloride And Propylene Glycol. (2014). Jurnal Teknologi, 72(1). https://doi.org/10.11113/jt.v72.3225