A Complete System Modelling of Piezoelectric Energy Harvester (PEH) with Silicon Carbide (SiC) Used as Cantilever Base

Authors

  • Mohd Nor Fakhzan Mohd Kazim School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
  • Selvanayakan Raman School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
  • Muhammad Hafiz Shafie School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
  • Nashrul Fazli Mohd Nasir School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
  • Asan Gani Abdul Muthalif Department of Mechatronics, Kulliyah of Engineering, International Islamic University Malaysia (IIUM), 53100 Jalan Gombak. Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.11113/jt.v69.3295

Keywords:

Silicon carbide, cantilever beam, piezoelectric, optimization, analytical modelling

Abstract

Silicon carbide (SiC) is a material that possesses hardness and robustness to operate under high temperature condition. This work is a pilot in exploring the feasibility of cubic piezo element on the SiC wafer with integrated proof mass as horizontal cantilever with perpendicular displacement with respect to the normal plane. With the advance of electronic circuitry, the power consumption is reduced to nano-watts. Therefore, harvesting ambient energy and converting into electrical energy through piezoelectric material will be useful for powering low power devices. Resonance is a property which able to optimize the generated output power by tuning the proof masses. The damping ratio is a considerable parameter for optimization. From analytical study, small damping ratio will enhance the output power of the piezoelectric energy harvester (PEH). This paper will present mathematical modelling approach, simulation verification and the conditional circuit named versatile precision full wave rectifier.  

References

J. M. Gilbert and F. Balouchi. 2008. Comparison of Energy Harvesting Systems for Wireless Sensor Networks. International Journal of Automation and Computing. 5(4): 334–347.

R. Xu, L. M. Borregaard, A. Lei, M. Guizzetti, E. Ringgaard, T. Zawada, O. Hansen, and E. V. Thomsen. 2012. Preliminary Performance Evaluation of MEMS-based Piezoelectric Energy Harvesters in Extended Temperature Range. Procedia Engineering. 47: 1434–1437.

J. M. R. Kudimi, F. Mohd-Yasin, and S. Dimitrijev. 2012. SiC-based Piezoelectric Energy Harvester for Extreme Environment. Procedia Engineering. 47: 1165–1172.

Y. Li, L. Cheng, and P. Li. 2003. Modeling and Vibration Control of a Plate Coupled with Piezoelectric Material. Composite Structures. 62(2): 155–162.

M. N. Fakhzan and A. G. A. Muthalif. 2011. Vibration based Energy Harvesting Using Piezoelectric Material. In Mechatronics (ICOM), 2011 4th International Conference On. 1–7.

M. N. Fakhzan and A. G. A. Muthalif. 2013. Harvesting Vibration Energy Using Piezoelectric Material: Modeling, Simulation and Experimental Verifications. Mechatronics. 23(1): 6–66.

S. J. G. Gift and B. Maundy. 2007. Versatile Precision Full-Wave Rectifiers for Instrumentation and Measurement. IEEE Trans. Instrum. Meas. 56(5): 1703–1710.

Clark, W. W. 1999. Semi-active Vibration Control with Piezoelectric Materials as Variable Stiffness Actuators. Proceedings of SPIE-The International Society for Optical Engineering. 3672: 123–130.

L. R. Clare, S. G. Burrow. 2008. Power Conditioning For Energy Harvesting. Active and Passive Smart Structures and Integrated Systems. 6928.

Henry A. Sodano, Daniel J. Inman and Gyuhae Park. 2004. A Review of Power Harvesting from Vibration Using Piezoelectric Materials. Center For Intelligent Material Systems and Structures. 36(3): 197–205.

Lallart. M., Garbuio. L., Richard. C, Guyomar. D. 2008. Double Synchronized Switch Harvesting (DSSH). A New Energy Harvesting Scheme For Efficient Energy Extraction. IEEE Trans Ultrasonic Ferroelectric Frequency Control. 55(10).

Geffrey K. Ottman, Heath F. Hofmann and George A. Lesieutre. 2003. Optimized Piezoelectric Energy Harvesting Circuit Using Step-down Converter in Discontinuous Conduction Mode. IEEE Trans. Power Electron. 18: 696–703.

Mahmoud, K. M. Younis, Mohd Zulfadhli Ahmad Marzuki. 2010. Cantilever Beam Vibrations into Useful Energy. Final Year Project Report: UIAM.

A. K. A. Mohd Ihsan, H. A. Lim, and M. J. Mohd Nor. 2012. Analysis, Design and Simulation of Piezoelectric Acoustic Microsensor. J. Teknol. 44(1): 13–26.

N. M. Nor Ayob, M. J. Pusppanathan, R. Abdul Rahim, M. H. F. Rahiman, F. R. Mohd Yunu, S. Buyamin, I. M. Abd Rahim, and Y. Md Yunos. 2013. Design Consideration for Front-End System in Ultrasonic Tomography. J. Teknol. 64(5).

Downloads

Published

2014-07-20

How to Cite

A Complete System Modelling of Piezoelectric Energy Harvester (PEH) with Silicon Carbide (SiC) Used as Cantilever Base. (2014). Jurnal Teknologi (Sciences & Engineering), 69(8). https://doi.org/10.11113/jt.v69.3295