Study of Electric Field an Magnetic Field Affected Biological Cells

Authors

  • Mohd Zikrillah Zawahir Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor Malaysia
  • Ruzairi Abdul Rahim Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor Malaysia
  • Zulkarnay Zakaria Tomographic Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
  • Mohd Saiful Badri Mansor Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor Malaysia
  • Mohamed Shukri Abdul Manaf Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor Malaysia

DOI:

https://doi.org/10.11113/jt.v69.3296

Keywords:

Electric field, magnetic field, electroporation, trans membrane voltage, apoptosis

Abstract

This paper presents the elaboration on effect of electric field and magnetic field to biological cells. Electroporation has become important parameter in treatment cancer or tumour cells. By using electric field or magnetic field, membrane cell will undergo process electroporation where membrane cell structures being altered for induce apoptosis process.

References

Ibey, B. L., A. G. Pakhomov, et al. 2010. Selective Cytotoxicity of Intense Nanosecond-duration Electric Pulses In Mammalian Cells. Biochimica et Biophysica Acta (BBA)-General Subjects. 1800(11): 1210–1219.

Tang, L.-L., C. X. Sun, et al. 2007. Steep Pulsed Electric Fields Modulate Cell Apoptosis Through the Change of Intracellular Calcium Concentration. Colloids and Surfaces B: Biointerfaces. 57(2): 209–214.

Pakhomov, A. G., R. Shevin, et al. 2007. Membrane Permeabilization and Cell Damage by Ultrashort Electric Field Shocks. Archives of Biochemistry and Biophysics. 465(1): 109–118.

Nesin, O. M., O. N. Pakhomova, et al. 2011. Manipulation of Cell Volume and Membrane Pore Comparison Following Single Cell Permeabilization With 60- and 600-Ns Electric Pulses. Biochimica et Biophysica Acta (BBA) – Biomembranes. 1808(3): 792–801.

Sun, C., C. Yao, et al. 2002. Experimental Study on Irreversible Electrical Breakdown of Tumor Cell Under Steep Pulsed Electric Fields. Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint.

Kolb, J. F., X. Chen, et al. 2009. Tumor Treatment with Nanosecond Pulsed Electric Fields. Pulsed Power Conference, 2009. PPC '09. IEEE.

Schoenbach, K. H., S. Katsuki, et al. 2002. Bioelectrics-New Applications for Pulsed Power Technology. Plasma Science, IEEE Transactions on. 30(1): 293–300.

Yamaguchi, S., Y. Sato, et al. 2006. Combination Effects of the Repetitive Pulsed Magnetic Stimulation and the Anticancer Agent Imatinib on Human Leukemia Cell Line TCC-S. Magnetics, IEEE Transactions on. 42(10): 3581–3583.

Bordelon, D. E., R. C. Goldstein, et al. 2012. Modified Solenoid Coil That Efficiently Produces High Amplitude AC Magnetic Fields With Enhanced Uniformity for Biomedical Applications. Magnetics, IEEE Transactions on. 48(1): 47–52.

Ogiue-Ikeda, M., H. Kotani, et al. 2001. Inhibition of leukemia cell growth under magnetic fields of up to 8 T. Magnetics, IEEE Transactions on. 37(4): 2912–2914.

Tofani, S. 2002. Electromagnetic Field Exposure System for the Study of Possible Anti-cancer Activity. Electromagnetic Compatibility, IEEE Transactions on. 44(1): 148–151.

Nagae, H., I. Nagano, et al. 2011. Development of New Cancer Treatment using Approved MRI Contrast Agent and Induction Heating Device. General Assembly and Scientific Symposium, 2011 XXXth URSI.

Ogiue-Ikeda, M., Y. Sato, et al. 2004. Destruction of Targeted Cancer Cells Using Magnetizable Beads and Pulsed Magnetic Forces. Magnetics, IEEE Transactions on. 40(4): 3018–3020.

Jing, D., G. Shen, et al. 2010. Circadian Rhythm Affects the Preventive Role of Pulsed Electromagnetic Fields on Ovariectomy-induced Osteoporosis in Rats. Bone. 46(2): 487–495.

Altunc, S., C. E. Baum, et al. 2009. Design of a Special Dielectric Lens for Concentrating a Sub Nanosecond Electromagnetic Pulse on a Biological Target. Dielectrics and Electrical Insulation, IEEE Transactions on. 16(5): 1364–1375.

Yamaguchi, S., M. Ogiue-Ikeda, et al. 2005. Effects of Magnetic Stimulation on Tumors and Immune Functions. Magnetics, IEEE Transactions on. 41(10): 4182–4184.

Úbeda, A., M. Díaz-Enriquez, et al. 1997. Hematological Changes in Rats Exposed to Weak Electromagnetic Fields. Life Sciences. 61(17): 1651–1656.

Trujillo, C. J., S. Garcia-Jimeno, et al. 2011. Magneto Hyperthermia Applied to in Vitro Liver Tissue by Using an External RF Applicator. Health Care Exchanges (PAHCE), 2011 Pan American.

Laqué-Rupérez, E., M. J. Ruiz-Gómez, et al. 2003. Methotrexate Cytotoxicity on MCF-7 Breast Cancer Cells is not Altered by Exposure to 25 Hz, 1.5 mT Magnetic Field and Iron (III) Chloride Hexahydrate. Bioelectrochemistry. 60(1–2): 81–86.

Pang, L., C. Baciu, et al. 2001. Photodynamic Effect on Cancer Cells Influenced by Electromagnetic Fields. Journal of Photochemistry and Photobiology B: Biology. 64(1): 21–26.

Walleczek, J. and T. F. Budinger. 1992. Pulsed Magnetic Field Effects on Calcium Signaling in Lymphocytes: Dependence on Cell Status and Field Intensity. FEBS Letters. 314(3): 351–355.

Morita, M., T. Inoue, et al.(2005. Resonant Circuits for Hyperthermia Excited by RF Magnetic Field of MRI. Magnetics, IEEE Transactions on. 41(10): 3673–3675.

Jayasundar, R., L. D. Hall, et al. 2001. RF Coils for Combined MR and Hyperthermia Studies: I. Hyperthermia Applicator as an MR Coil. Magnetic Resonance Imaging. 19(1): 111–116.

Murase, K., H. Takata, et al. 2012. Control of the Temperature Rise in Magnetic Hyperthermia with Use of an External Static Magnetic Field. Physica Medica.

Pilla, A., R. Fitzsimmons, et al. 2011. Electromagnetic Fields as First Messenger in Biological Signaling: Application to Calmodulin-dependent Signaling in Tissue Repair. Biochimica et Biophysica Acta (BBA)- General Subjects. 1810(12): 1236–1245.

Pengfei, Y., H. Lifang, et al. 2009. Inhibitory Effects of Moderate Static Magnetic Field on Leukemia. Magnetics, IEEE Transactions on. 45(5): 2136–2139.

Stratton, D., S. Lange, et al. 2013. Pulsed Extremely Low-frequency Magnetic Fields Stimulate Microvesicle Release from Human Monocytic Leukemia Cells. Biochemical and Biophysical Research Communications. 430(2): 470–475.

Takemura, Y. 2012. Resonant Circuits for Thermal Therapy Excited by RF Magnetic Field from MRI. Sensors, 2012 IEEE.

Macaroff, P. P., F. L. Primo, et al. 2006. Synthesis and Characterization of a Magnetic Nanoemulsion as a Promising Candidate for Cancer Treatment. Magnetics, IEEE Transactions on. 42(10): 3596–3598.

Jianyong, G., L. Zhengming, et al. 2009. The Research of the Effects of Ultralow Frequency Pulsed Electromagnetic Field on Cancer Treatment. Bioinformatics and Biomedical Engineering, 2009. ICBBE 2009. 3rd International Conference.

Cifra, M., J. Z. Fields, et al. 2011. Electromagnetic Cellular Interactions. Progress in Biophysics and Molecular Biology. 105(3): 223–246.

Funk, R. H. W., T. Monsees, et al. 2009. Electromagnetic Effects–from Cell Biology to Medicine. Progress in Histochemistry and Cytochemistry. 43(4): 177–264.

Noriega-Luna, B., M. Sabanero, et al. 201. Influence of Pulsed Magnetic Fields on the Morphology of Bone Cells in Early Stages of Growth. Micron. 42(6): 600–607.

Weaver, J. C. and Y. A. Chizmadzhev. 1996. Theory of Electroporation: A Review. Bioelectrochemistry and Bioenergetics. 41(2): 135–160.

Weaver, J. C., K. C. Smith, et al. 2012. A Brief Overview of Electroporation Pulse Strength–duration Space: A Region Where Additional Intracellular Effects are Expected. Bio electrochemistry. 87(0): 236–243.

Garcia, P. A., J. H. Rossmeisl, et al. 2011. Electrical Conductivity Changes During Irreversible Electroporation Treatment of Brain Cancer. Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE.

Buescher, E. S. and K. H. Schoenbach. 2003. Effects of Sub Microsecond, High Intensity Pulsed Electric Fields on Living Cells-intracellular Electro Manipulation. Dielectrics and Electrical Insulation, IEEE Transactions on. 10(5): 788–794.

Susin, S. A., N. Zamzami, et al. 1998. Mitochondria as Regulators of Apoptosis: Doubt No More. Biochimica et Biophysica Acta (BBA)- Bioenergetics. 1366(1–2): 151–165.

Beebe, S. J., P. M. Fox, et al. 2001. Nanosecond Pulsed Electric Field (nsPEF) Effects on Cells and Tissues: Apoptosis Induction and Tumor Growth Inhibition. Pulsed Power Plasma Science, 2001. PPPS-2001. Digest of Technical Papers.

Garon EB, S. D., T. T. Vernier PT, et al. 2007. In Vitro and In Vivo Evaluation and a Case Report of Intense Nanosecond Pulsed Electric Field as a Local Therapy for Human Malignancies. Int J Cancer. 675–628.

Engin H. Serpersu, Kazuhiko Kinosita, et al. 1985. Reversible and Irreversible Modification of Erythrocyte Membrane Permeability by Electric Field. Biochim Biophys Acta. 812(3): 779–785.

Antov, Y., A. Barbul, et al. 2005. Electroendocytosis: Exposure of Cells to Pulsed Low Electric Fields Enhances Adsorption and Uptake of Macromolecules. Biophysical Journal. 88(3): 2206–2223.

Nuccitelli R, P. U., F. W. Chen X, et al. 2006. Nanosecond Pulsed Electric Fields Cause Melanomas to Self-Destruct. Biochem Biophys Res Commun. 343(2): 351–360.

Beebe, S. J., F. P., Rec, L. J., Willis, E. L., Schoenbach, K. H. 2003. Nanosecond, High-intensity Pulsed Electric Fields Induce Apoptosis in Human Cells. FASEB J. 17(11): 1493–1495.

Dev, S. B., D. P. Rabussay, et al. 2000. Medical Applications Of Electroporation. Plasma Science, IEEE Transactions on. 28(1): 206–223.

Weaver, J. C. 2000. Electroporation of Cells and Tissues. Plasma Science, IEEE Transactions on. 28(1): 24–33.

Xiao, S., M. Miglliaccio, et al. 2009. Focusing Pulsed Electromagnetic Radiation in the Near Field. Pulsed Power Conference, 2009. PPC '09. IEEE.

Raylman, R. R., C. A. and W. R. L. 1996. Exposure to Strong Static Magnetic Field Slows the Growth of Human Cancer Cells in Vitro. Bioelectromagnetics. 17(5): 358–363.

Yamaguchi, S., O.-I. M. and U. S. Sekino, M. 2006. Effects of Pulsed Magnetic Stimulation on Tumor Development and Immune Functions in Mice. Bioelectromagnetics. 27(1): 64–72.

Strieth, S., S. D., Eichhorn, M. E., Dellian, M., Luedemann, S., Griebel, J., Bellemann, M., Berghaus, A., Brix, G. 2008. Static Magnetic Fields Induce Blood Flow Decrease and Platelet Adherence in Tumor Microvessels. Cancer Biol Ther. 7(6): 814–819.

Teodori L, G. J., Smolewski P, Ghibelli L, Bergamaschi A, De Nicola M, Darzynkiewicz Z. 2002. Exposure of Cells to Static Magnetic Field Accelerates Loss of Integrity of Plasma Membrane During Apoptosis. Cytometry. 49(3): 227–231.

S. Ueno, M. I., and T. Kitajima. 1994. Redistribution of Dissolved Oxygen Concentration Under Magnetic Fields up to 8 T. J. Appl. Phys. 75(10): 7174–7176.

Ueno, S., M. Iwasaka, et al. 1995. Dynamic Behavior of Dissolved Oxygen Under Magnetic Fields. Magnetics, IEEE Transactions on. 31(6): 4259–4261.

Ogiue-Ikeda, M., Y. Sato, et al. 2003. A New Method to Destruct Targeted Cells Using Magnetizable Beads and Pulsed Magnetic Force. NanoBioscience, IEEE Transactions on. 2(4): 262–265.

BE., N. 1989. Electrochemical Treatment of Cancer. I: Variable Response to Anodic and Cathodic Fields. Am J Clin Oncol. 12(6): 530–536.

Inal, J. M., A.-A. E., Stratton, D., Kholia, S., Antwi-Baffour, S. S., Jorfi, S., Lange, S. 2012. Microvesicles in Health and Disease. Arch Immunol Ther Exp (Warsz). 60(2): 107–121.

Liburdy, R. P., T. T., Magin, R. L. 1986. Magnetic Field-induced Drug Permeability in Liposome Vesicles. Radiat Res. 108(1): 102–111.

Gartzke, J., L. K. 2002. Cellular Target of Weak Magnetic Fields: Ionic Conduction Along Actin Filaments of Microvilli. Am J Physiol Cell Physiol. 283(5): 1333–1346.

Kotnik, T., P. Kramar, et al. 2012. Cell Membrane Electroporation-Part 1: The phenomenon. Electrical Insulation Magazine, IEEE. 28(5): 14–23.

Deamer DW, B. J. 1986. Permeability of Lipid Bilayers to Water and Ionic Solutes. Chem Phys Lipids. 40: 167–188.

Jansen M, B. A. 1995. A Comparative Study of Diffusive and Osmotic Water Permeation Across Bilayers Composed of Phospholipids with Different Head Groups and Fatty Acyl Chains. Biophys J. 68(3): 997–1008.

Dev, S. B., D. P. Rabussay, et al. 2000. Medical Applications of Electroporation. Plasma Science, IEEE Transactions on. 28(1): 206–223.

Downloads

Published

2014-07-20

How to Cite

Study of Electric Field an Magnetic Field Affected Biological Cells. (2014). Jurnal Teknologi (Sciences & Engineering), 69(8). https://doi.org/10.11113/jt.v69.3296