Enhancement of the Response time of a Reflective Type Sensor for Ozone Measurements

Authors

  • Michael David Light wave Communication Research Group, Infocomm Research Alliance,Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Tay Ching En Marcus Light wave Communication Research Group, Infocomm Research Alliance,Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Maslina Yaacob Light wave Communication Research Group, Infocomm Research Alliance,Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Rashidi Salim Light wave Communication Research Group, Infocomm Research Alliance,Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nabihah Hussin Light wave Communication Research Group, Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Haniff Ibrahim Light wave Communication Research Group, Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Sevia Mahdaliza Idrus Light wave Communication Research Group, Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nor Hafizah Ngajikin Light wave Communication Research Group, Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Asrul Izam Azmi Light wave Communication Research Group, Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v69.3297

Keywords:

Optical path length, optical recto-reflectors, ozone, sensitivity, response time, gas cell length, cross sectional area and rate of diffusion

Abstract

Sensor response time T (90) or speed of response is mathematically a function of the rate of diffusion of a gas sample in an absorption spectroscopic gas cell. Increasing the rate of diffusion increases the speed of response and vice versa. In this article, we present the design and analytical results on the response time of a reflective type ozone gas sensor. The variables of length and cross sectional area were interplayed to optimise the rate of diffusion. Two optical reflectors were employed in increasing the path length of the sensor; this resulted in the simultaneous reduction of the effective cell length and an increase in the diameter of the gas cell (cylindrical structure). Ozone diffusion in the 30 cm length of gas cell has been simulated to be 0.01713 ppm cm3/secs in comparison to 0.01023 ppm cm3/sec for a single reflector gas cell, which shows an enhancement of the sensor response time.

References

Zhang M., T. Ning, S. Zhang, Z. Li, Z. Yuan, and Q. Cao. 2014. Response Time and Mechanism of Pd Modified TiO< sub> 2 gas Sensor. Materials Science in Semiconductor Processing. 17: 149–154.

Boon-Brett L., G. Black, P. Moretto, and J. Bousek. 2010. A Comparison of Test Methods for the Measurement of Hydrogen Sensor Response and Recovery Times. International Journal of Hydrogen Energy. 35: 7652–7663.

Marek J., H-P. Trah, Y. Suzuki, and I. Yokomori. 2003. Sensors for Automotive Technology: VCH, Weinheim.

Joseph M. and P. Pandya. 1986. Finding Response Times in a Real-time System. The Computer Journal. 29: 390–395.

Starke T. K. and G. S. Coles. 2002. High Sensitivity Ozone Sensors for Environmental Monitoring Produced Using Laser Ablated Nanocrystalline Metal Oxides. Sensors Journal, IEEE. 2: 14–19.

Maffiolo G., E. Joos, R. Quesnel, and P. F. Thomas. 1988. Development and Testing of Short Response Time SO2, NOX and O3 Analyzers. JAPCA, 38:1, 36-38, DOI: 10.1080/08940630. 10466350 1988.

Zahn A., J. Weppner, H. Widmann, K. Schlote-Holubek, B. Burger, T. Kühner and H. Franke. 2012. A Fast and Precise Chemiluminescence Ozone Detector for Eddy Flux and Airborne Application. Atmospheric Measurement Techniques. 5: 363–375.

Chang. R. 2010. Chemistry: Chapter 17–Chemistry in the Atmosphere. Published by McGraw-Hill Companies, Inc., 1221 Avenue Americas, New York, NY 10020. 10:789 & 2010.

Degner M., N. Damaschke, H. Ewald, S. O'Keeffe, and E. Lewis. 2009. UV LED-based Fiber Coupled Optical Sensor for Detection of Ozone in the Ppm and Ppb Range. In: Sensors, 2009 IEEE. IEEE: 95–99.

Böttger S., M. Köhring, U. Willer and W. Schade. 2013. Off-beam Quartz-enhanced Photoacoustic Spectroscopy with LEDs. Applied Physics B. 113: 227–232.

Da Silva L. F., A. C. Catto, W. Avansi Jr, L. S. Cavalcante, J. Andres, K. Aguir, V. R. Mastelaro and E. Longo. 2014. A Novel Ozone Gas Sensor Based on One Dimensional (1D) α-Ag 2 WO 4 Nanostructures. Nanoscale.

Parrish, D. D. and F. C. Fehsenfeld, F. C. 2000. Atmos. Environ. 34: 1921–1957.

Black D. R., R. A. Harley, S. V. Hering and M. R. Stolzenburg. 2000. A New, Portable, Real-time Ozone Monitor. Environmental Science & Technology. 34: 3031–3040.

Köhring M., U. Willer, S. Böttger, A. Pohlkötter and W. Schade. 2012. Fiber-Coupled Ozone Sensor Based on Tuning Fork-Enhanced Interferometric Photoacoustic Spectroscopy. Selected Topics in Quantum Electronics, IEEE Journal. 18: 1566–1572.

Gondal M. A., A. Dastageer and Z. H. Yamani. 2009. Laser-induced Photoacoustic Detection of Ozone at 266 Nm Using Resonant Cells of Different Configuration. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. 44: 1457–1464.

Harun S., H. Yang, H. Arof and H. Ahmad. 2012. Theoretical and Experimental Studies on Coupler Based Fiber Optic Displacement Sensor with Concave Mirror. Optik-International Journal for Light and Electron Optics. 123: 2105–2108.

De Maria L. and D. Bartalesi. 2012. A Fiber-optic Multisensor System for Predischarges Detection on Electrical Equipment. IEEE Sensors Journal. 12: 207–212.

Teranishi K., Y. Shimada, N. Shimomura and H. Itoh. 2013. Investigation of Ozone Concentration Measurement by Visible Photo Absorption Method. Ozone: Science & Engineering. 35: 229–239.

Liu J. and R. Azzam. 1997. Polarization Properties of Corner-cube Retroreflectors: Theory and Experiment. Applied optics. 36: 1553–1559.

O’Keeffe S., C. Fitzpatrick and E. Lewis. 2007. An Optical Fibre Based Ultra Violet and Visible Absorption Spectroscopy System for Ozone Concentration Monitoring. Sensors and Actuators B: Chemical. 125: 372–378.

Carr J. J. and J. M. Brown. 1998. Introduction to Biomedical Equipment Technology. Third Edition. Prentice Hall ISBN: 0-13-849431-2. NI Supported: No Published 2010.

Abe T., N. Iwata, T. Tsuji, T. Mihara, S. Akao, K. Noguchi, N. Nakaso, D. Sim, Y. Ebi, T. Fukiura, H. Tanaka and K. Yamanaka. 2007. Evaluation of Response Time in Ball Surface-Acoustic-Wave Hydrogen Sensor Using Digital Quadrature Detector. Japanese Journal of Applied Physics. 46: 4726.

R. C. Reid. 2001. The Properties of Gases and Liquids. McGraw-Hill New York.

Giancoli, D. C. 1984. General Physics. 1: 365–368.

Shive, J. N., and R. L. Weber. 1982. Similarities in Physics. Chapter 1: Generalized Steady Flow. 4–7.

Stroud, K. A. 1970. Engineering Mathematics (Programmes & Problems). Macmillan & Co. Ltd. 1:251-277.

Edmund Optics. http://www.edmundoptics.com/optics/prisms/retroreflection-prisms/uv-fused-silica-corner-cube-retroreflectors/2888.

De Maria, L. and G. Rizzi, P. Serragli, R. Marini and L. Fialdini. 2008. Optical Sensor for Ozone Detection in Medium Voltage Switchboard. Sensors, 2008 IEEE. 1297–1300.

De Maria, L. and G. Rizzi. 2009. Ozone Sensor for Application in Medium Voltage Switchboard. Journal of Sensors.

Optics O. http://www.oceanoptics.com/Products/74series.asp.

Optics and Optical Intruments Annual Catalog. 2014. Edmund Optics Singapore Pte Ltd. www.edmundoptics.com.sg .

Tee H. and J. Chin. 2013. i-Stone Technology Sdn. Bhd. 24, Jalan Perdagangan 8, Taman Universiti, 81300 Skudai, Johor, Malaysia.

Downloads

Published

2014-07-20

How to Cite

Enhancement of the Response time of a Reflective Type Sensor for Ozone Measurements. (2014). Jurnal Teknologi (Sciences & Engineering), 69(8). https://doi.org/10.11113/jt.v69.3297