Lab-on-Chip Microfluidics System for Single Cell Mass Measurement: A Comprehensive Review

Authors

  • Md. Habibur Rahman Micro-Nano System Engineering Research Group, Nanotechnology Research Alliance, Control and Mechatronic Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Ridzuan Ahmad Micro-Nano System Engineering Research Group, Nanotechnology Research Alliance, Control and Mechatronic Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v69.3301

Keywords:

Single cell mass, suspended micro channel resonator, living cantilever arrays, pedestal mass measurement sensor

Abstract

Single cell mass (SCM) is one of the intrinsic properties of cell and is a vital part of single cell analysis (SCA). To date, a myriad numbers of works has been successfully reported for single cell mass measurement but the reported information are scattered, consequently a comprehensive review becomes mandatory to bring them together. Lab-on-chip microfluidics system integrated with micro-resonator provided an excellent platform to measure single cell mass directly (in presence of cells). On-chip microfluidics system like suspended micro channel resonator (SMR) was reported for non-adherent single yeast cell mass while ‘living cantilever arrays’ (LCA) was proposed to measure adherent HeLa cell mass. On the other hand, cantilever based resonant mass measurement system has non-uniform mass sensitivity; this issue has been overcome by pedestal mass measurement system (PMMS). PMMS has a unique geometrical structure that provided uniform mass sensitivity to the sensing surface. Moreover, we presented a comprehensive discussion of each of the available methods of SCM elaborating the sensing mechanism, geometry of the sensor and governing equations. It is hoped that, information presented in this comprehensive review paper will be a valuable source for the single cell mass analysers and biological researchers.  

References

M. R. Ahmad, M. Nakajima, S. Kojima, M. Homma, and T. Fukuda. 2010. Nanoindentation Methods to Measure Viscoelastic Properties of Single Cells Using Sharp, Flat, and Buckling Tips Inside ESEM. IEEE Trans. Nanobioscience. 9(1): 12–23.

M. R. Ahmad, M. Nakajima, S. Kojima, M. Homma, and T. Fukuda. 2008. The effects of Cell Sizes, Environmental Conditions, and Growth Phases on the Strength of Individual W303 Yeast Cells Inside ESEM. IEEE Trans. Nanobioscience. 7(3): 185–93.

M. R. Ahmad, M. Nakajima, S. Kojima, M. Homma, and T. Fukuda. 2011. Buckling Nanoneedle for Characterizing Single Cells Mechanics Inside Environmental SEM. IEEE Trans. Nanotechnol. 10(2): 226–236.

M. R. Ahmad, M. Nakajima, S. Kojima, M. Homma, and T. Fukuda. 2008. In Situ Single Cell Mechanics Characterization of Yeast Cells Using Nanoneedles Inside Environmental SEM. IEEE Trans. Nanotechnol. 7(5): 607–616.

I. Obataya, C. Nakamura, S. Han, N. Nakamura, and J. Miyake. 2005. Nanoscale Operation of a Living Cell Using An Atomic Force Microscope with a Nanoneedle. Nano Lett. 5(1): 27–30.

R. J. Fasching, S. J. Bai, T. Fabian, and F. B. Prinz. 2006. Nanoscale Electrochemical Probes for Single Cell Analysis. Microelectron. Eng. 83, 4–9, 1638–1641.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis. 2007. Weighing of Biomolecules, Single Cells and Single Nanoparticles in Fluid. Nature. 446(7139): 1066–1069.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski. 2007. Nanomechanical Analysis of Cells from Cancer Patients. Nat. Nanotechnol. 2(12): 780–783.

M. Godin, A. K. Bryan, T. P. Burg, K. Babcock, and S. R. Manalis. 2007. Measuring the Mass, Density, and Size of Particles and Cells Using a Suspended Microchannel Resonator. Appl. Phys. Lett. 91(12): 123121–1231212.

K. Park, J. Jang, D. Irimia, J. Sturgis, and J. Lee. 2008. Living Cantilever Arrays’ for Characterization of Mass of Single Live Cells In Fluids. Lab Chip. 8: 1034–1041.

F. Xia, W. Jin, X. Yin, and Z. Fang. 2005. Single-cell Analysis by Electrochemical Detection with a Microfluidic Device. J. Chromatogr. A. 1063(1–2): 227–233.

I. Kubo, S. Furutani, and K. Matoba. 2011. Use of a Novel Microfluidic Disk in the Analysis of Single-cell Viability and the Application to Jurkat Cells. J. Biosci. Bioeng. 112(1): 98–101.

A. K. Bryan, A. Goranov, A. Amon, and S. R. Manalis. 2010. Measurement of Mass, Density, and Volume During the Cell Cycle of Yeast. Proc. Natl. Acad. Sci. 107(3): 999–1004.

F. S. O. Fritzsch, C. Dusny, O. Frick, and A. Schmid. 2012. Single-cell Analysis in Biotechnology, Systems Biology, and Biocatalysis. Annu. Rev. Chem. Biomol. Eng. 3: 129–55.

J. Lee, R. Chunara, W. Shen, K. Payer, K. Babcock, T. P. Burg, and S. R. Manalis. 2011. Suspended Microchannel Resonators with Piezoresistive Sensors. Lab Chip. 11(4): 645–51.

K. Park, L. J. Millet, N. Kim, H. Li, X. Jin, G. Popescu, N. R. Aluru, K. J. Hsia, and R. Bashir. 2010. Measurement of Adherent Cell Mass and Growth. Proc. Natl. Acad. Sci. 107(48): 20691–96.

M. Y. M. Chiang, Y. Yangben, N. J. Lin, J. L. Zhong, and L. Yang . 2013. Relationships among cell morphology, intrinsic cell stiffness and cell-substrate interactions. Biomaterials. 34(38): 9754–62.

G. Weder, M. C. Hendriks-Balk, R. Smajda, D. Rimoldi, M. Liley, H. Heinzelmann, A. Meister, and A. Mariotti. 2014. Increased Plasticity of the Stiffness of Melanoma Cells Correlates with Their Acquisition of Metastatic Properties. Nanomedicine. 10(1): 141–8.

M. H. Rahman, A. H. Sulaiman, M. R. Ahmad, and T. Fukuda. 2013. Finite Element Analysis of Single Cell Wall Cutting by Piezoelectric-Actuated Vibrating Rigid Nanoneedle. IEEE Trans. Nanotechnol. 12(6): 1158–1168.

S. Suresh. 2007. Biomechanics and Biophysics of Cancer Cells. Acta Biomater. 3(4): 413–38.

A. Schmid, H. Kortmann, P. S. Dittrich, and L. M. Blank. 2010. Chemical and Biological Single Cell Analysis. Curr. Opin. Biotechnol. 21(1): 12–20.

D. Di Carlo and L. P. Lee. 2006. Dynamic Single-cell Analysis for Quantitative Biology. Anal. Chem. 78(23): 7918–7925.

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell. 2009. Review of Cell and Particle Trapping in Microfluidic Systems. Anal. Chim. Acta. 649(2): 141–57.

B. Ilic, H. G. Graighead, S. Krylov, W. Senaratne, and P. Neuzil. 2004. Attogram Detection Using Nanoelectromechanical Oscillators. J. Appl. Phys. 95(7): 3694–3703.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes. 2006. Zeptogram-scale Nanomechanical Mass Sensing. Nano Lett. 6(4): 583–86.

A. Gupta, D. Akin, and R. Bashir. 2004. Single Virus Particle Mass Detection Using Microresonators with Nanoscale Thickness. Appl. Phys. Lett. 84(11): 1976–1978.

D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, and H. Baltes. 2002. Cantilever Arrays on a Single Chip: Mass-sensitive Detection of Volatile Organic Compounds. Anal. Chem. 74(13): 3084–3095.

B. Ilic, Y. Yang, and H. G. Craighead. 2004. Virus detection using nanoelectromechanical devices. Appl. Phys. Lett. 85(13): 2604–06.

T. P. Burg and S. R. Manalis. 2003. Suspended Microchannel Resonators for Biomolecular Detection. Appl. Phys. Lett. 83(13): 2698–2700.

Y. Weng, F. F. Delgado, S. Son, T. P. Burg, S. C. Wasserman, and S. R. Manalis. 2011. Mass Sensors with Mechanical Traps for Weighing Single Cells in Different Fluids. Lab Chip. 11(24): 4174–80.

S. Dohn, R. Sandberg, W. Svendsen, and A. Boisen. 2005. Enhanced Functionality of Cantilever Based Mass Sensors Using Higher Modes. Appl. Phys. Lett. 86(23): 233501–03.

S. Cooper. 2006. Distinguishing between Linear and Exponential Cell Growth During the Division Cycle: Single-Cell Studies, Cell-Culture Studies, and the Object of Cell-Cycle Research. Theor. Biol. Med. Model. 3: 10–25.

S. De Flora, A. Izzotti, K. Randerath, E. Randerath, H. Bartsch, J. Nair, R. Balansky, F. Schooten, P. Degan, G. Fronza, D. Walsh, and J. Lewtas. 1996. DNA Adducts and Chronic Degenerative Diseases. Pathogenetic Relevance and Implications in Preventive Medicine. Mutat. Res. Genet. Toxicol. 366(3): 197–238.

J. M. Mitchison. 2005. Single Cell Studies of the Cell Cycle and Some Models. Theor. Biol. Med. Model. 2: 4–9.

C. J. Lord and A. Ashworth. 2012. The DNA Damage Response and Cancer Therapy. Nature. 481(7381): 287–94.

C. Fenselau and P. A. Demirev. 2002. Characterization of Intact Microorganisms by MALDI Mass Spectrometry. Mass Spectrom. Rev. 20(4): 157–71.

D. Sarid. 1994. Scanning Force Microscopy : with Applications to Electric, Magnetic, and Atomic Forces. Oxford University Press, USA.

W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, and S. R. Manalis. 2011. Measuring Single-cell Density. Proc. Natl. Acad. Sci. 108(27): 10992–6.

J. L. Arlett and M. L. Roukes. 2010. Ultimate and Practical Limits of Fluid-based Mass Detection with Suspended Microchannel Resonators. J. Appl. Phys. 108(8): 084701–11.

J. Lee, A. K. Bryan, and S. R. Manalis. 2011. High Precision Particle Mass Sensing Using Microchannel Resonators In The Second Vibration Mode. Rev. Sci. Instrum. 82(2): 02370401–04.

J. Bühler, F. P. Steiner, and H. Baltes. 1997. Silicon Dioxide Sacrificial Layer Etching in Surface Micromachining. J. Micromechanics Microengineering. 7(1): 1–13.

J. W. Berenschot, N. R. Tas, T. S. J. Lammerink, M. Elwenspoek, and A. Berg. 2002. Advanced Sacrificial Poly-Si Technology for Fluidic Systems. J. Micromechanics Microengineering. 12(5): 621–624.

E. B. Cummings and A. K. Singh. 2003. Dielectrophoresis in Microchips Containing Arrays of Insulating Posts: Theoretical and Experimental Results. Anal. Chem. 75(18): 4724–31.

D. Di Carlo, N. Aghdam, and L. P. Lee. 2006. Single-cell Enzyme Concentrations, Kinetics, and Inhibition Analysis Using High-density Hydrodynamic Cell Isolation Arrays. Anal. Chem. 78(14): 4925–30.

J. E. Molloy and M. J. Padgett. 2002. Lights, Action: Optical Tweezers. Contemp. Phys. 43(4): 241–258.

M. Evander, L. Johansson, T. Lilliehorn, J. Piskur, M. Lindvall, S. Johansson, M. Almqvist, T. Laurell, and J. Nilsson. 2007. Noninvasive Acoustic Cell Trapping in a Microfluidic Perfusion System for Online Bioassays. Anal. Chem. 79(7): 2984–91.

F. Chowdhury, S. Na, D. Li, Y. C. Poh, T. S. Tanaka, F. Wang, and N. Wang. 2010. Material Properties of the Cell Dictate Stress-induced Spreading and Differentiation in Embryonic Stem Cells. Nat. Mater. 9(1): 82–88.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher. 2006. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell. 126(4): 677–89.

A. Gupta, D. Akin, and R. Bashir. 2004. Single Virus Particle Mass Detection Using Microresonators with Nanoscale Thickness. Appl. Phys. Lett. 84(11): 1976–1978.

M. S. Pommer, Y. Zhang, N. Keerthi, D. Chen, J. a Thomson, C. D. Meinhart, and H. T. Soh. 2008. Dielectrophoretic Separation of Platelets from Diluted Whole Blood in Microfluidic Channels. Electrophoresis. 29(6): 1213–8.

J. E. Sader, J. W. M. Chon, and P. Mulvaney. 1999. Calibration of Rectangular Atomic Force Microscope Cantilevers. Rev. Sci. Instrum. 70(10): 3967–3969.

D. Di Carlo, L. Y. Wu, and L. P. Lee. 2006. Dynamic Single Cell Culture Array. Lab Chip. 6(11): 1445–9.

J. M. Mitchison. 2003. Growth During the Cell Cycle. Int. Rev. Cytol. 226: 165–258.

Downloads

Published

2014-07-20

How to Cite

Lab-on-Chip Microfluidics System for Single Cell Mass Measurement: A Comprehensive Review. (2014). Jurnal Teknologi, 69(8). https://doi.org/10.11113/jt.v69.3301