Simulation of Single Cell Trapping Via Hydrodynamic Manipulation

Authors

  • Amelia Ahmad Khalili Dept. of Control and Mechatronic Engineering, Faculty of Electrical Eng., Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Ariffanan Mohd Basri Dept. of Control and Mechatronic Engineering, Faculty of Electrical Eng., Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Ridzuan Ahmad Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v69.3306

Keywords:

Single cell, hydrodynamic resistance, microfluidic, cell trapping

Abstract

Microfluidic devices are important for the single cell analysis such as cell mechanical and electrical characterization. Single cell characterization could be related to many significant applications including early disease diagnosis. However to perform the single cell manipulation, firstly a single cell have to be isolated and a platform for the cell manipulation have to be provided. One of the methods to trap a single cell is by using hydrodynamic trapping in the microfluidic channel. This study provides a finite element model for single cell trapping for a yeast cell model. The objectives of the simulations are to obtain the appropriate channels’ geometry and optimized ratio of the fluid’s inlet and suction flow rate to trap a single yeast cell. Trap channel was designed to trap a 5μm yeast cell with a suction hole placed in the end of the trap channel. Design geometry and the ratio of fluid flow rates for the cell trapping model were studied using the hydrodynamic resistance concept. The analysis was carried out using numerical solutions from the finite element ABAQUS-FEA software. Using the cell trapping model, a single yeast cell able to be trapped into the trap channel with optimized channel’s suction hole’s geometry and appropriate fluid’s inlet and suction flow rate ratio. The appropriate QTrap/QMain ratio to perform cell trapping using hydrodynamic resistance concept is the ratio value above 1. A 5 μm yeast cell model able to be trap inside a trap channel with the height, width and length of 7 μm by manipulating the suction hole’s flow rate of  1.5 and 2.0 μm of height, 7 and 3 μm of length and width, respectively which situated at the centre edge of the trap channel.

References

R. M. Johann. 2006. Analytical and Bioanalytical Chemistry. 385: 408.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims, and J. M. Ramsey. 2003. Analytical Chemistry. 75(21): 5646–5655, Sep. 2003.

G. Roman, Y. Chen, P. Viberg, A. Culbertson, and C. Culbertson. 2007 Analytical and Bioanalytical Chemistry. 387: 9–12.

A. K. Price and C. T. Culbertson. 2007. Analytical Chemistry. 79: 2614.

C. E. Sims and N. L. Allbritton. 2007. Lab on a Chip. 7: 423.

S. M. Kim, S. H. Lee, and K. Y. Suh. 2008. Lab on a Chip. 8: 1015.

S. Bhattacharya, T.-C. Chao, and A. Ros. 2011. Electrophoresis. 32: 2550.

M. Huang, S. Fan, W. Xing, and C. Liu. 2010. Mathematical and Computer Modelling. 52: 2036.

W.-H. Tan and S. Takeuchi. 2007. Proceedings of the National Academy of Sciences of the United States of America. 104: 1146.

T. Teshima, H. Ishihara, K. Iwai, A. Adachi, and S. Takeuchi. 2010. Lab on a Chip. 10: 244.

Z. Tang, Y. Akiyama, K. Itoga, J. Kobayashi, M. Yamato, and T. Okano. 2012. Biomaterials. 33: 7405.

I. Kumano, K. Hosoda, H. Suzuki, K. Hirata, and T. Yomo. 2012. Lab on a Chip. 12: 3451.

J. Chung, Y.-J. Kim, and E. Yoon. 2011. Applied Physics Letters. 98: 123701

G. Thiagarajan, K. Deshmukh, Y. Wang, A. Misra, J. L. Katz, and P. Spencer. 2007. Journal of Biomedical Materials Research Part A. 83:332.

T. Gervais, J. El-Ali, A. Günther, and K. F. Jensen. 2006. Lab on a Chip. 6: 500.

A. K. Bryan, A. Goranov, A. Amon, and S. R. Manalis. 2010. Proceedings of the National Academy of Sciences of the United States of America. 107: 999.

M. R. Ahmad, M. Nakajima, S. Kojima, M. Homma, and T. Fukuda 2008. IEEE Transactions on Nanobioscience.7: 185.

A. E. Smith, Z. Zhang, C. R. Thomas, K. E. Moxham, and A. P. Middelberg. 2000. Proceedings of the National Academy of Sciences of the United States of America. 97: 9871.

J. D. Stenson, C. R. Thomas, and P. Hartley. 2009. Chemical Engineering Science. 64: 1892–1903.

J. D. Stenson, P. Hartley, C. Wang, and C. R. Thomas. 2011. Biotechnology Progress. 27: 505.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis. 2007. Nature. 446: 7139.

J. Lee, R. Chunara, W. Shen, K. Payer, K. Babcock, T. P. Burg, and S. R. Manalis. 2011. Lab on a Chip. 11: 645.

K. V Christ, K. B. Williamson, K. S. Masters, and K. T. Turner. 2010. Biomedical Microdevices. 12: 443.

Christ and K. T. Turner. 2010. Journal of Adhesion Science and Technology. 24: 37.

Downloads

Published

2014-07-20

How to Cite

Simulation of Single Cell Trapping Via Hydrodynamic Manipulation. (2014). Jurnal Teknologi (Sciences & Engineering), 69(8). https://doi.org/10.11113/jt.v69.3306