Tensile Strength Matrix Composite Waste Glass Fiber Reinforced Plastics

Authors

  • A. Mataram Mechanical Engineering Department, Sriwijaya University, Jl. Raya Palembang – Prabumulih KM 32 Inderalaya (OI) Tlp, Indonesia

DOI:

https://doi.org/10.11113/jt.v69.3325

Keywords:

Composites, waste plastic, fiber glass, tensile test

Abstract

Polypropylene (PP) including a type of plastic which ranks second on the most number of types of plastic waste after the type of High Density Polyethylene (HDPE). Glass fibers have superior mechanical properties of natural fibers. Because it has good mechanical properties, glass fibers currently plays an important role in the use of composite reinforcement. Mechanical properties of glass fiber owned and PP waste in environmental conditions that more conditions, it can be utilized as a composite reinforcement and matrix materials. This research was conducted by of injection molding method. The comparison between the volume fraction of the glass fiber matrix of type PP plastic waste with variation 0% fibers 100% matrixs, 10% fibers 90% matrixs, 20% fibers 80% matrixs, 30% fibers 70% matrixs, 40% fibers 60% matrixs, and 50 % fibers 50% matrixs. The optimum conditions obtained in this study was the comparison of variation occurs in 50% fibers volume fractions of 50% matrixs were: tensile stress was 24.30 N/mm2, tensile strain was 13.60%.

References

Annual Book of ASTM Standards, D638-10. Standard Test Method for Tensile Properties of Plastics. ASTM Standards and Literature References for Composite Materials, Downloaded University Teknologi Malaysia (2010).

Arbelaiz, A., B. Fernandez, G. Cantero, R. Llano-Ponte, A. Valea, I. Mondragon. 2005. Mechanical Properties of Flax Fibre/Polypropylene Composites. Influence of Fibre/Matrix Modiï¬cation and Glass Fibre Hybridization. Composites: Part A 36. 1637–1644.

Bormaud Alain and Christophe Baley. 2009. Rigdity Analysis Of Polypropylene/Vegetal Fibre Composites After Recycling. Polymer Degradation and Stability. 94: 297–305.

Callister, William D. and David, G. Rethwisch. 1940. Materials Science and Engineering an Introduction. 8th edition. United States of America.

Karmarkar, Ajay, S. S. Chauhan, Jayant M. Modak, Manas Chanda. 2006. Mechanical Properties of Wood–ï¬ber Reinforced Polypropylene Composites: Effect of a Novel Compatibilizer with Isocyanate Functional Group. Composites: Part A. 38: 227–233.

Mujiarto Imam. 2005. Sifat dan Karakteristik Material Plastik dan Bahan Aditif. Jurnal Traksi. 3(2).

Sahwan, Firman L., Djoko, Heru Martono, Sri Wahyono, Lies, A. Wisoyodharmo. 2005. Sistem Pengelolaan Limbah Plastik di Indonesia. J. Tek. Ling. P3TL-BPPT. 6(1): 311–318.

Siagian Kiki, A. 2009. Pemanfaatan Limbah Plastik Polietilena (PE) Sebagai Matriks Komposit Dengan Bahan Penguat Serat Kaca, Fakultas MIPA Universitas Sumatera Utara, Medan.

Suharto. 1995. Teori Bahan dan Pengaturan Teknik. Jakarta: Rineka Cipta.

Tampubolon Evanora. 2010. Pembuatan dan Karakterisasi Papan Serat yang Dibuat dari Serat Tandan Kosong Kelapa Sawit-Urea Formaldehida, Fakultas MIPA, Universitas Sumatera Utara. Medan.

Zampaloni, M, F. Pourboghrat, S. A. Yankovich, B. N. Rodgers, J. Moore, L. T. Drzal, A. K. Mohanty, M. Misra. 2007. Kenaf Natural Fiber Reinforced Polypropylene Composites: A Discussion on Manufacturing Problems and Solutions. Composites: Part A. 38: 1569–1580.

Downloads

Published

2014-07-08

How to Cite

Tensile Strength Matrix Composite Waste Glass Fiber Reinforced Plastics. (2014). Jurnal Teknologi (Sciences & Engineering), 69(6). https://doi.org/10.11113/jt.v69.3325