A Study Of Ionospheric GPS Scintillation During Solar Maximum at UTeM Station
DOI:
https://doi.org/10.11113/jt.v73.3382Keywords:
GPS, Ionospheric irregularity, Ionospheric scintillation, Solar maximumAbstract
Wireless signals propagated along global positioning system (GPS) channel are affected by ionospheric electron density irregularities such that GPS signals may experience amplitude and phase fluctuations. The global navigation satellite system (GNSS), ionospheric scintillation, and total electron content (TEC) monitor (GISTM) receiver has been installed at UTeM, Malaysia (2.3139°N, 102.3183°E) for monitoring ionospheric scintillation at several frequencies. In this paper, the GPS ionospheric scintillations are concerned for the dual frequency L1 (fL1 = 1.57542 GHz) and L2C (fL2= 1.2276 GHz). Ionospheric scintillation data has been collected during solar maximum cycle 2013-2014 for six months October 2013–March 2014. Solar activities significantly impact the ionospheric GPS scintillation, especially in the equatorial region where Malaysia is located. The GPS link is analyzed to investigate how the scintillation increases during the solar maximum cycle. When the sun flux is maximum, the total of electrons is increased in the ionospheric layer and the scintillation values gradually become high. The ionospheric amplitude/phase scintillation, carrier-to-noise (C/No) ratio, and availability of GPS satellites are reported in the proposed experimental GPS model. Consequently, for Malaysia, typical threshold received C/No ratio is 43 dB-Hz, implying that C/No ratio should be greater than 43 dB-Hz to receive good signals at the GPS receiver.
References
E.F. Aon, R.Q. Shaddad, A.R. Othman, Y.H. Ho. 2014. In IEEE CSPA 2014 Kuala lumpur, Malaysia.
V. Sreeja, M. Aquino, Z.G. Elmas. 2011. Space Weather. 9(10).
Y.H. Ho, S. Abdullah, M.H. Mokhtar. 2014. JurnalTeknologi. 69(2): 33.
R.G. Ezquer, P.M. Kintner, M.A. Cabrera, S.M. Radicella, B. Forte. 2003. Advances in Space Research 31(3):741.
A.W. Wernik, J.A. Secan, E.J. Fremouw. 2003. Advances in Space Research. 31(4): 971.
G.R. Lima, S. Stephany, E.R. Paula, I.S. Batista, M.A. Abdu, L.F. Rezende, M.G. Aquino, A.P. Dutra. 2014. Space Weather. 12(6): 406.
W.D. Pesnell, B.J. Thompson, P.C. Chamberlin. 2012. The Solar Dynamics Observatory (SDO).Springer.
C.D. Camp, K.K. Tung. 2007. Geophysical Research Letters 34(14).
S. Basu, K.M. Groves, S. Basu, P.J. Sultan. 2002. J. Atmos. Sol. Terr. Phys. 64: 1745.
S. Basu, E. MacKenzie, S. Basu. 1988. Radio Sci. 23(3):363.
P.M. Kinter, H. Kil, T.L. Beach, E.R. dePaula. 2001. Radio Sci. 36(4): 731.
M.T. Muella, E.R. de Paula, I.J. Kantor, L.F. Rezende, P.F. Smorigo. 2009. Adv. Space Res. 43: 1957.
A. Seif, M. Abdullah, A.M. Hasbi, Y. Zou. 2012. ActaAstronautica. 81: 92.
E.F. Aon, R.Q. Shaddad, A.R. Othman, Y.H. Ho. 2014. In IRICT 2014, Johor Bahru, Malaysia.
H.A. Silva, P.O. Camargo, et al. 2010. Advances in Space Research 45: 1113.
http://phys.org/news/2014-01-nasa-sdo-giant-january-sunspots.html
P.M. Kintner, M. Ledvina, E.R. Paula. 200. Space Weather. 5(9)
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.