CO2 Absorption in Membrane Contactor using Piperazine, Monoethanolamine and Diethanolamine: A Mass Transfer and Performance Study

Authors

  • H. N. Mohammed Chemical Engineering Department, Tikrit University, Saladdin, Iraq
  • A. L. Ahmad School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  • B. S. Ooi School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  • C. P. Leo School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

DOI:

https://doi.org/10.11113/jt.v69.3390

Keywords:

CO2 absorption, mass transfer, PVDF capillary membrane, membrane contactor

Abstract

Carbone dioxide has been demonstrated to be the largest component of greenhouse gases, which increases the temperature of the earth’s surface. Therefore, much effort has been endeavor to recover CO2. Recently, polymeric micro-porous membrane contactors have been proposed as an alternative technology for the conventional gas absorption equipments such as bubble column, packed tower and sieve trays column. In this work, three concentrations of aqueous piperazine (PZ) solutions namely 0.2 M, 0.6 M and 1 M in contact with polyvinylidene fluoride (PVDF) capillary membrane. Moreover, the absorption performances were compared with the aqueous solution of 1M monoethanolamine (MEA) and 1 M diethanolamine (DEA). The results revealed that the efficiency of amine solutions in CO2 absorption were according to the order of 1 M PZ > 1 M MEA > 0.6 M PZ > 1 M DEA > 0.2 M PZ. It was found that the efficiency of the system was controlled by the liquid phase resistance which could be improved with the increased of the liquid flow rate. 

References

A. Arenillas, K.M. Smith, T.C. Drage, C.E. Snape. 2005. Fuel. 84: 2204–2210.

A. A. Olajire. 2010. Energy. 35: 2610–2628.

A. Gabelman, S. T. Hwang. 1999. J. Membr. Sci. 159: 61–106.

A. B. Rao, E. S. Rubin. 2002. Environ. Sci. Technol. 36: 4467–4475.

J. G. Lu, Y. F. Zheng, M. D. Cheng, L. J Wang. 2007. J. Membr. Sci. 289: 138–149.

G. Va´ zquez, E. Alvarez, J. M. Navaza, R. Rendo, E. Romero. 1997. J. Chem. Eng. Data. 42: 57–59.

G. Va´ zquez, E. Alvarez, R. Rendo, E. Romero, J. M. Navaza. 1996. J. Chem. Eng. Data. 41: 806–808.

G. Rochelle, E. Chen, S. Freeman, D. V. Wagener, Q.A. Voice. 2011. Chem. Eng. J. 171: 725– 733.

X. Chen, G. T. Rochelle. 2011. Chem. Eng. Res. Design. 89: 1693–1710.

G. Murshid, A. M. Shariff, L. K., Keong, M. A. Bustam. 2011. J. Chem. Eng. Data. 56: 2660–2663.

H. A. Rangeala. 1996. J. Membr. Sci. 112: 229–240.

S. Khaisri, D. deMontigny, P. Tontiwachwuthikul, R. Jiraratananon. 2009. Sep. Purif. Technol.65: 290–297.

H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij. 1993. J. Membr. Sci. 78: 217–238.

A. Esquiroz-Molina, S. Georgaki, R. Stuetz, B. Jefferson, E. J. McAdam. 2013. J. Membr. Sci. 427: 276–282.

Y. Shui-ping, F. Meng-Xiang, Z. Wei-Feng, W. Shu-Yuan, X. Zhi-Kang, L. Zhong-Yang, C. Ke-Fa. 2007. Fuel Proce. Technol. 88: 501–511.

C. S Tan, J. E. Chen. 2006. Sep. Purif. Technol. 49: 174–180.

R. Dugas, G. Rochelle. 2009. Energy Procedia. 1: 163–1169.

R. Dugas, G. Rochelle. 2009. J. Chem. Eng. Data. 56: 2187–2195.

S. H. Lin, K. L. Tung. W. J. Chen, H. W. Chang. 2009. J. Membr. Sci. 333: 30–37.

S. Atchariyawut, C. Feng, R. Wang, R. Jiraratananon, D. T. Liang. 2006. J. Membr. Sci. 285: 272–281.

S. Atchariyawut, R. Jiraratananon, R. Wang. 2008. Sep. Purif. Technol. 63: 15–22.

A. Esquiroz-Molina, S. Georgaki, R. Tuetz, B. Jefferson, E. J. McAdama. 2013. J. Membr. Sci. 427: 276–282.

A. Muhammad, M. I. A. Mutalib, T. Muregesan, A. Shafeeq. 2009. J. Chem. Eng. Data. 54: 2317–2321.

G. Vazquez, E. Alvarez, R. Rendo, E. Romero, J.M. Navaza. 1996. J. Chem. Eng. Data. 41: 806–808.

Downloads

Published

2014-08-20

How to Cite

CO2 Absorption in Membrane Contactor using Piperazine, Monoethanolamine and Diethanolamine: A Mass Transfer and Performance Study. (2014). Jurnal Teknologi, 69(9). https://doi.org/10.11113/jt.v69.3390