Polymer based Membrane Electrospun Fiber in Fuel Cell Application: A Short Review

Authors

  • Hazlina Junoh Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Juhana Jaafar Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. H. D. Othman Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mukhlis A. Rahman Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v69.3401

Keywords:

Nanofiber, nanocomposite, electrospinning, fuel cell

Abstract

usage which contributes to the environmental issues. Among the type of existing renewable energy, fuel cells is the most promising renewable energy sources since the energy can be directly converted from combustible of fuel. The proton exchange membrane (PEM) is the heart of the fuel cells system. The research and development on proton electrolyte membrane is keep burgeoned. Even though the studies of the electrolyte nanocomposite membrane for fuel cell application are quite various but only a few studies focused on the effect of electrospun nanocomposite membrane on the performance of proton electrolyte membrane. This review is focusing on the electrospinning process for the preparation of electrospun fiber membrane. This review is concentrates on polymer based membrane electrospun nanofiber and their influence on proton conductivity as well as on fuel crossover barrier properties. The proton conductivity and fuel crossover can be improved by fully exfoliated structure of nanocomposite electrolyte membrane via electropinning process and thus the membrane can be an alternative PEM for DMFC applications.

References

Melnik, A. V. and Shagalina, O. V. 2011. History of Nanotechnology. Siberian Federal University.

Cavaliere, S., Subianto, S., Savych, I., Jones, D. J. and Rozière, J. 2011. Electrospinning: Designed Architectures for Energy Conversion and Storage Devices. Energy Environmental Science. 4: 4761–4785.

Fang, J., Wang, X. and Lin, T. 2011. Functional Applications of Electrospun Nanofibers. In Lin, T. (Ed.) Nanofibers-Production, Properties and Functional Applications. InTech. 287–326.

Liu, Y., He, J.-H., Yu, J.-Y. and Zeng, H.-M. 2008. Controlling Numbers and Sizes of Beads in Electrospun Nanofibers. Polymer International. 636(57): 632–636.

Formhals, A. 1934. U.S. Patent No. 1, 975,504. United States Patent Office.

Frenot, A. and Chronakis, I. S. 2003. Polymer Nanofibers Assembled by Electrospinning. Science and Technology. 8(1): 64–75.

Tucker, N., Stanger, J. J., Staiger, M. P., Razzaq, H. and Hofman, K. 2012. The History of the Science and Technology of Electrospinning from 1600 to 1995. Journal of Engineered Fibers and Fabrics (SPECIAL ISSUE-July-FIBERS). 63–73.

Feng, C., Khulbe, K. C. and Matsuura, T. 2010. Recent Progress in the Preparation, Characterization, and Applications of Nanofibers and Nanofiber Membranes via Electrospinning/Interfacial Polymerization. Journal of Applied Polymer Science. 115: 756–776.

Lu, P. and Ding, B. 2008. Applications of Electrospun Fibers. Recent Patents on Nanotechnology. 2(3): 169–182.

Sautther, B. P. 2005. Continuous Polymer Nanofibers using Electrospinning. NSF-REU Summer 2005 Program. Universiti of Illinois, Chicago.

Chronakis, I. 2005. Novel Nanocomposites and Nanoceramics Based on Polymer Nanofibers Using Electrospinning Process—A Review. Journal of Materials Processing Technology. 167(2–3): 283–293.

Cason, M. W. 2010. Electrospun Nafion® Nanofibers for Proton Exchange Membranes. Literature Seminar. 23 September.

Baji, A., Mai, Y.-W., Wong, S.-C., Abtahi, M. and Chen, P. 2010. Electrospinning of Polymer Nanofibers: Effect of Oriented Morphology, Structures and Tensile Properties. Journal of Composite Science and Technology. 70(5): 703–718.

Uttayarat, P., Perets, A., Li, M., Pimton, P., Stachelek, S. J., Alferiev, I., Composto, R. J., Levy, R. J. and Lelkes, P. I. 2010. Micropatterining of Three-Dimension Electrospun Polyurethene Vascular Grafts. Acta Biomaterialia. 6: 4229–4237.

Huang, Z.-M., Zhang, Y.-Z., Kotaki, M. and Ramakrishna, S. 2003. A Review on Polymer Nanofibers by Electrospinning and their Applications in Nanocomposites. Composite Science and Technology. 63: 2223–2253.

Zucchelli, A., Fabiani, D. and Gualandi, C. 2009. An Innovative and Versatile Approach to Design Highly Porous, Patterned, Nanofibrous Polymeric Materials. J. Mater Sci. 44: 4969–4975.

A Aricò, A. S., Baglio, V. and Antonucci, V. 2009. Direct Methanol Fuel Cells : History , Status and Perspectives. In Liu, H. and Zhang, J. (Eds.). Electrocatalysis of Direct Methanol Fuel Cells. Weinheim: Verlag GmbH & Co.

Dong, B., Gwee, L., Salas-de la Cruz, D., Winey, K. I. and Elabd, Y. A. 2010. Super Proton Conductive High-Purity Nafion Nanofibers. Nano Lett. 10: 3785–3790.

Mauritz, K. A. and Moore, R. B. 2004. State of Understanding of Nafion. Chem. Rev. 104: 4535–4585.

Tamura, T. and Kawakami, H. 2010. Aligned Elctropun Nanofiber Composite Membranes for Fuel Cell Electrolytes. Nano Lett. 10: 1324–1328.

Pan, C., Wu, H., Wang, C., Wang, B., Zhang, L., Cheng, Z., Hu, P., Pan, W., Zhou, Z., Yang, X. and Zhu, J. 2008. Nanowire-Based High-Performance "Micro Fuel Cells": One Nanowire, One Fuel Cell. Adv. Mater. 20: 1644–1648.

Li, L., Zhang, J. and Wang, Y. 2003. Sulfonated Poly(Ether Ether Ketone) Membranes for Direct Methanol Fuel Cell. Journal of Membrane Science. 226(1-2): 159–167.

Thomassin, J.-M., Pagnoulle, C., Caldarella, G., Germain, A. and Robert, J. 2006. Contribution of Nanoclays to The Barrier Properties of A Model Proton Exchange Membrane for Fuel Cell Application. Journal of Membrane Science. 270(1–2): 50–56.

Zaidi, S. M. J. 2005. Preparation And Characterization of Composite Membranes Using Blends of SPEEK/PBI with Boron Phosphate. Electrochimica Acta. 50(24): 4771–4777.

Kreuer, K. D. 2001. On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells. Journal of Membrane Science. 185: 29–39.

Hakim, A. R., Purbasari, A., Kusworo, T. D. and Dewi, E. L. 2012. Composite sPEEK with Nanoparticles for Fuel Cell's Applications: Review. Proceeding of International Conference on Chemical and Material Engineering 2012. 12–13 September. Semarang, Indonesia. MSD 19: 1–11.

Doğan, H., Inan, T. Y., Koral, M. and Kaya, M. 2011. Organo-Montmorillonites and Sulfonated PEEK Nanocomposite Membranes for Fuel Cell Applications. Applied Clay Science. 52(3): 285–294.

Lee, C., Jo, S. M., Choi, J., Baek, K.-Y., Truong, Y. B., Kyratzis, I. L. and Shul, Y. G. 2013. SiO2/Sulfonated Poly Ether Ether Ketone (SPEEK) Composite Nanofiber Mat Supported Proton Exchange Membranes for Fuel Cells. J. Mater. Sci. 48: 3665–3671.

Jaafar, J., Ismail, A. F., Matsuura, T. and Nagai, K. 2011. Performance of SPEEK Based Polymer–Nanoclay Inorganic Membrane for DMFC. Journal of Membrane Science. 382(1–2): 202–211.

Bafna, A. A. 2004. Polyethylene-clay Nanocomposites : Processing-Structure-Property Relationship. Doctor of Philosophy. Universiti of Cincinnati, Cincinnati, Ohio, USA.

Neppalli, R., Wanjale, S., Birajdar, M. and Causin, V. 2013. The Effect of Clay and of Electrospinning on the Polymorphism, Structure and Morphology of Poly (vinylidene fluoride). European Polymer Journal. 49: 90–99.

Jaafar, J., Ismail, A. F., and Matsuura, T. 2009. Preparation and Barrier Properties of SPEEK/Cloisite 15A®/TAP Nanocomposite Membrane for DMFC Application. Journal of Membrane Science. 345(1–2): 119–127.

Wan, T. and Wang, B. 2013. Clay Platelets Alter the Thermal Properties of Nylon. Plastics Research Online. Society of Plastic Engineers (SPE).

Downloads

Published

2014-08-20

How to Cite

Polymer based Membrane Electrospun Fiber in Fuel Cell Application: A Short Review. (2014). Jurnal Teknologi (Sciences & Engineering), 69(9). https://doi.org/10.11113/jt.v69.3401