Effect of Starch Addition on Microstructure and Strength of Ball Clay Membrane

Authors

  • Maisarah Mohamed Bazin Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81300 UTM Johor Bahru, Johor, Malaysia
  • Muhd Amirudin Ahmat Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81300 UTM Johor Bahru, Johor, Malaysia
  • Nurhanna Zaidan Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81300 UTM Johor Bahru, Johor, Malaysia
  • Ahmad Fauzi Ismail Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Norhayati Ahmad Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81300 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v69.3408

Keywords:

Ball clay, ceramic membranes, corn starch, apparent porosity, flexural strength

Abstract

The use of starch as pore-forming agent is one of the frequently used methods to produce porous ceramics membrane with controlled microstructure (porosity and pore size) because corn starch are cheap, non- toxic and environmental friendly. A membrane with the mixture 0–35 wt% of corn starch and ball clay were prepared by compaction process and sintered at 1200°C. Thermal analysis has been done to identify the minimum sintering temperature for ball clay. The sintered membranes show the range value of shrinkage is 4.5–22.76 % and apparent porosity of 9.14–31.83 % depending on the starch content. The pore structures were analyzed by FESEM. The strength of sintered samples was tested by 3-point bending test. The flexural strength reduced from 21–7 MPa. These clay membrane are promising porous ceramic structure for water filtration applications due to their excellent combination physical and mechanical properties.

References

M. Mulder. 1990. Basic Principle of Membrane Technology. Kluwer Academic Publishers, Boston, London.

A. J. Burggraf & L. Cot. 1996. Fundamentals of Inorganic Membranes, Science and Technology. Amsterdam: Elsevier.

Y. Yoshino, T. Suzuki, B. N. Nair, H. Taguchi & N. Itoh. 2005. Journal of Membrane Science. 8–17: 267.

M. Kazemimoghadam, A. Pak & T. Mohammadi. 2004. Microporous mesoporous Materials. 70: 127–134.

F. Bouzerara, A. Harabi, S. Achour & A. Larbot. 2006. Journal of the European Ceramic Society. 26: 1663–1671.

B. K. Nandi, R. Uppaluri and M. K. Purkait. 2008. Applied Clay Science. 42: 102–110.

S. Sarkar, S. Bandyopadhyay, A. Larbot & S. Cerneaux. 2012. Journal of Membrane Science. 392–393: 130–136.

J. Bentama, K. Ouazzani & A. Elgarouani. 2003. African Journal of Science and Technology. 4: 38–41.

S. Khemakhem, A. Larbot & R. Ben Amar. 2009. Ceramics International. 35: 55–61.

A. Mecif, J. Soro, A. Harabi & J. P. Bonnety. 2010. J. Am. Ceram. Soc. 93: 1306–1312.

D. Vasanth, R. Uppaluri & G. Pugazhenthi. 2011. Separation Science and Technology. 46: 1241–1249.

P. Monash & G. Pugazhenthi. 2011. Int. J. Appl. Ceram. Technol. 8 [1]: 227–238.

F. Jing, Q. Guotong, W. Wei & Z. Xinqing. 2011. Separation and Purification Technology. 80: 585–591

A. Norhayati, M. Z. Nurhanna, M. B. Maisarah. 2013. Advanced Materials Research. 686: 280–284

A. Norhayati, Y. Nakamura, K. Hiroki, M. B. Maisarah. 2013. Advanced Materials Research. 686: 305–310

H. P. Hsieh. 1991. General Characteristics of Inorganic Membranes. Van Nostrand Reinhold: New York.

B. K. Nandi, R. Uppaluri & M. K. Purkait. 2009. Separation Science and Technology. 44: 2840–2869

D. Vasanth, R. Uppaluri & G. Pugazhenthi. 2011. Separation Science and Technology. 46: 1241–1249.

A. Harabi, A. Guechia, S. Condom. 2012. Procedia Engineering. 33: 220–224

L. Palacio, Y. Bouzerdi, M. Ouammou, A. Albizane, J. Bennazha, A. Hernández & J. I. Calvo. 2009. Desalination. 245: 501–507

S. Khemakhem, A. Larbot & R. Ben Amar. 2009. Ceramics International. 35: 55–61.

M. Khemakhem, S. Khamekhem, S. Ayedi & R. B. Amar. 2011. Ceramic International. 37: 3617–3625.

S. Sarkar, S. Bandyopadhyay, A. Larbot & S. Cerneaux. 2012. Journal of Membrane Science. 392–393: 130–136.

A. Majouli, S. Tahiri, S. Alami Younssi, H. Loukili & A. Albizane. 2012. Ceramic International. 38: 4295–4303.

E. Gregorova, W. Pabst, Z. Zivcova, I. Sedlarova & S. Holikova. 2010. Journal of the European Ceramic Society. 30: 2871–2880.

S. Li, C. A. Wang & J. Zhou. 2013. Ceramic International (Accepted manuscript).

F. A. Almeida, E. C. Botelho, F. C. L. Melo, T. M. B. Campos & G. P. Thim. 2009. Journal of the Europian Ceramic Society. 29: 1587–1594.

H. M. Alves, G, Tari, A.T Fonseca & J.M.F. Ferreira. 1998. Materials Research Bulletin. 33: 1439–1448.

E. Gregorova, W. Pabst & I. Bohacenko. 2006. Journal of the European Ceramic Society. 26: 1301–1309.

O. Lyckfeldt & J.M.F Ferreira.1997. Journal of the European Ceramic Society. 18: 131–140

G.C.C. Yang & C.M. Tsai. 2008. Desalination. 233: 129–136

V. Lee & T. Yeh. 2008. Materials Science and Engineering A. 485: 5–13

J. Chandradass, H.K Ki, B. Dong sik, K. Prasad, G. Balachandar, S.Athisaya Divya & M. Balasubramanian. 2009. Journal of the European Ceramic Society. 29: 2219–2224.

Downloads

Published

2014-08-20

How to Cite

Effect of Starch Addition on Microstructure and Strength of Ball Clay Membrane. (2014). Jurnal Teknologi (Sciences & Engineering), 69(9). https://doi.org/10.11113/jt.v69.3408