Thermal Hydrogen Reduction for Synthesis of Gold Nanoparticles in the Nanochannels of Mesoporous Silica Composite

Authors

  • Mohamad Azani Jalani Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Leny Yuliati Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Hendrik O. Lintang Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v70.3420

Keywords:

Gold nanoparticles, mesoporous silica composite, particle size, thermal hydrogen reduction

Abstract

Gold nanoparticles (AuNPs) with small particle size have been difficult to be synthesized due to their strong agglomeration. Herein we report that the nanochannels of mesoporous silica synthesized from template sol-gel synthesis were utilized to prepare AuNPs by employing thermal hydrogen reduction. Mesoporous silica composite with an interpore distance of 4.1 nm was successfully fabricated as a thin film by an amphiphilic trinuclear gold(I) pyrazolate complex ([Au3Pz3]C10TEG) as a template. In contrast to calcination method of this composite and the bulk [Au3Pz3]C10TEG complex at 450ºC for 3 h, thermal hydrogen reduction at 250ºC for 2 h showed transmission electron microscope (TEM) images and diffraction pattern with smaller particle size (14.5 nm) and more homogenous distribution of AuNPs with up to 44% of the particle size in the range of 10 to 20 nm. The decreasing of average particle size in this new strategy indicated by the red-shifting of the surface plasmon resonance (SPR) band from 518 (AuNPs from the bulk [Au3Pz3]C10TEG complex) and 544 (calcination) to 558 nm.

References

Cao, Y., J. Huang, L. C. Wang, Y. M. Liu, H. Y. He, and K. N. Fan. 2011. Gold Nanoparticles Supported on Hydroxylapatite as High Performance Catalysts for Low Temperature CO Oxidation. Applied Catalysis B: Environmental. 101(3–4): 560–569.

Niidome, T., D. Pissuwan, and M. B. Cortie. 2011. The Forthcoming Applications of Gold Nanoparticles in Drug and Gene Delivery Systems. Journal of Controlled Release. 149(1): 65–71.

Astruc, D. and M. C. Daniel. 2004. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Review. 104(1): 293–346.

Wu, Y., C. Niu, Z. Wang, Z. Li, and R. Li. 2009. Synthesis and Shapes of Gold Nanoparticles by using Transition Metal Monosubstituted Heteropolyanions as Photocatalysts and Stabilizers. Frontiers of Chemistry in China. 4(1): 44–47.

[ Fukuoka, A., H. Araki, Y. Sakamoto, N. Sugimoto, J. Kimura, T. Higuchi, S. Inagaki, and M. Ichikawa. 2004. Template Synthesis of Nanoparticles Arrays of Gold, Platinum, and Palladium in Mesoporous Silica Films and Powders. Journal of Materials Chemistry. 14(4): 752–756.

Fukuoka, A., H. Araki, Y. Sakamoto, N. Sugimoto, H. Tsukada, Y. Kumai, Y. Akimoto, and M. Ichikawa. 2002. Template Synthesis of Nanoparticle Arrays of Gold and Platinum in Mesoporous Silica Films. Nano Letters. 2(7): 793–795.

Kumar, R., A. Ghosh, C. R. Patra, P. Mukherjee, and M. Sastry. 2003. Preparation and Stabilization of Gold Nanoparticles Formed by In Situ Reduction of Aqueous Chloroaurate Ions Within Surface-Modified Mesoporous Silica. Microporous and Mesoporous Materials. 58(3): 201–211.

Somorjai, G. A., Z. Konya, V. F. Puntes, I. Kiricsi, J. Zhu, J. W. Ager, M. K. Ko, H. Frei, and P. Alivisatos. 2003. Synthetic Insertion of Gold Nanoparticles into Mesoporous Silica. Chemistry of Materials. 15(6): 1242–1248.

Aida, T. and K. Tajima. 2001. Photoluminescent Silicate Microsticks Containing Aligned Nanodomains of Conjugated Polymers by Sol-Gel Based In Situ Polymerization. Angewandte Chemie International Edition. 40(20): 3803–3806.

Brinker, C. J., Y. Lu, Y. Yang, A. Sellinger, M. Lu, J. Huang, H. Fan, R. Haddad, G. Lopez, A. R. Burns, D. Y. Sasaki, and J. Shellnut. 2001. Self-Assembly of Mesoscopically Ordered Chromatic Polydiacetylene/Silica Nanocomposites. Nature. 410(6831): 913–917.

Lintang, H. O., K. Kinbara, Tanaka, T. Yamashita, and T. Aida. 2010. Self-Repair of a One-Dimensional Molecular Assembly in Mesoporous Silica by a Nanoscopic Template Effect. Angewandte Chemie International Edition. 49(25): 4241–4245.

Lintang, H. O., K. Kinbara, K. Tanaka, T. Yamashita, and T. Aida. 2012. Metal-Ion Permeation in Congested Nanochannels: The Exposure Effect of Ag+ Ions on the Phosphorescent Properties of a Gold(I)–Pyrazolate Complex that is Confined in the Nanoscopic Channels of Mesoporous Silica. Chemistry-An Asian Journal. 7(9): 2068–2072.

Lintang, H. O., K. Kinbara, and T. Aida. 2012. Thermally Resistive Phosphorescent Molecular Assembly in the Channels of Mesoporous Silica Nanocomposites. Proceedings of International Conferences on Enabling Science and Nanotechnology (ESciNano). Article Number 6149684. ISBN: 978-1-4577-0799-5.

Lintang, H. O., K. Kinbara, T. Yamashita, and T. Aida. 2010. Heating Effect of a One-Dimensional Molecular Assembly on Self-Repairing Capability in the Nanoscopic Channels of Mesoporous Silica. Proceedings of International Conferences on Enabling Science and Nanotechnology (ESciNano). Article Number 5700970. ISBN: 978-1-4244-8853-7.

Jalani, M. A., L. Yuliati, S. Endud, and H. O. Lintang. 2014. Synthesis of Mesoporous Silica Nanocomposites for Preparation of Gold Nanoparticles. Advanced Materials Research. 925: 233–237.

Raptis, R. G. and G. Yang. 2003. Supramolecular Assembly of Trimeric Gold(I) Pyrazolates through Aurophilic Attractions. Inorganic Chemistry. 42(2): 261–263.

Downloads

Published

2014-08-27

Issue

Section

Science and Engineering

How to Cite

Thermal Hydrogen Reduction for Synthesis of Gold Nanoparticles in the Nanochannels of Mesoporous Silica Composite. (2014). Jurnal Teknologi, 70(1). https://doi.org/10.11113/jt.v70.3420