Effect of Operating Parameters on Performance of Ultrafiltration (UF) to Fractionate Catfish Protein Hydrolysate

Authors

  • D. Novin Department of Process and Food Engineering, Faculty of Engineering, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • K. F. MD Yunos Department of Process and Food Engineering, Faculty of Engineering, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v70.3427

Keywords:

pH, ionic strength and feed concentration, ultrafiltration (UF), fish protein hydrolysate

Abstract

The effect of pH, ionic strength and feed concentration on performance of ultrafiltration (UF) to fractionate Catfish protein hydrolysate (CFPH) through 5kDa regenerated cellulose (RC) membrane was studied. The highest and lowest permeate flux belonged respectively to pH 9 and isoelectric point (IEP) with flux reduction of 5.75 L/m2.h at pH 9 and 10.98 L/m2.h at pH isoelectric through operating time. Further, by adding the salt, the highest permeate flux and transmission obtained at highest ionic strength of 0.15 M NaCl with 52.96% of transmission (in average). Then, the transmission reached to 54.18% by increasing feed concentration up to 1.5 mg/ml. 

References

Burns, D. B., Zydney, A. L. 1999. Effect of Solution pH on Protein Transport Through Ultrafiltration Membranes. Biotechnol. Bioeng. 64(1): 27–37.

Guerard, F., Dufosse, L., De La Broise, D., Binet. A. 2001. Enzymatic Hydrolysis of Proteins from Yellowï¬n Tuna (Thunnus albacares) Wastes using Alcalase. J. Mol. Catal. B. Enzym. 11(4–6): 1051–1059.

Chabeaud, A., Vandanjon, L., Bourseau P., Jaouen, P., Guérard, F. 2009. Fractionation by Ultrafiltration of a Saithe Protein Hydrolyzate (Pollachius virens): Effect of Material and Molecular Weight Cut-off on the Membrane Performances. J. Food. Eng. 91(3): 408–414.

Saidi, S., Deratani, A., Ben Amar, R., Belleville, M. P. 2013. Fractionation of a Tuna Dark Muscle Hydrolysate by a Two-step Membrane Process. Sep. Purif. Technol. 108: 28–36.

Lin, S. H., Hung, C. L., Juang, R. S. 2008. Effect of Operating Parameters on the Solutions by Dead-end Ultrafiltration. Desalination. 234(1–3): 116–125.

Das, R., Bhattacherjee, C., Ghosh, S. 2009. Effects of Operating Parameters and Nature of Fouling Behavior in Ultrafiltration of Sesame Protein Hydrolysate. Desalination. 237(1–3): 268–276.

Mathew, J., Aravindakumar, C.T., Aravind. U.K., 2008. Effect of Ionic Strength and Protein Concentration on the Transport of Proteins Through Chitosan/Polystyrene Sulfonate Multilayer Membrane. J. Membr. Sci. 325(2): 625–632.

Schägger, H., von Jagow, G. 1987. Tricine-sodium Dodecyl Sulphate-polyacrylamide Gel Electrophoresis for the Separation of Proteins in the Range from 1 to 100 kDa. Anal. Biochem. 166: 368–379.

Church, F. C., Swaisgood, H. E., Porter, D. H., Catignani, G. L. 1983. Spectrophotometric Assay Using O-Phthaldialdehyde for Determination of Proteolysis in Milk and Isolated Milk Proteins. J. Dairy. Sci. 66: 1219–1227.

Huisman, I.H., Pradanos, P., Hernandez, A. 2000. The Effect of Protein–Protein and Protein–membrane Interactions on Membrane Fouling in Ultrafiltration. J. Membr. Sci. 179(1–2): 79–90.

McDonogh, R. M., Bauser, H., Stroh, N., Chmiel, H. 1990. Concentration Polarisation and Adsorption Effects in Cross-flow Ultrafiltration of Proteins. Desalination. 79(2–3): 217–231.

Ricq, L., Narçon, S., Reggiani, J. C., Pagetti, J. 1999. Streaming Potential and Protein Transmission Ultrafiltration of Single Proteins and Proteins in Mixture: b-lactoglobulin and Iysozyme. J. Membr. Sci. 156: 81–96.

Mo, H., Tay, K. G., Ng, H. Y. 2008. Fouling of Reverse Osmosis Membrane by Protein (BSA): Effects of pH, Calcium, Magnesium, Ionic Strength and temperature. J. Membr. Sci. 315(1–2): 28–35.

Wang, Y. N., Tang, C. Y. 2011. Protein Fouling of Nanofiltration, Reverse Osmosis, and Ultrafiltration Membranes-The Role of Hydrodynamic Conditions, Solution Chemistry, and Membrane Properties. J. Membr. Sci. 376: 275–282.

Fane, A. G., Fell, C. J. D., Suki, A. 1983. The Effect of pH and Ionic Environment on the Ultraï¬ltration of Protein Solutions with Retentive Membranes. J. Membr. Sci. 16: 195–210.

Fane, A. G., Fell, C. J. D., Waters, A. G. 1983. Ultrafiltration of Protein Solutions Through Partially Permeable Membranes- The Effect of Adsorption and Solution Environment. J. Membr. Sci. 16: 211–224.

Suki, A., Fane, A. G., Fell, C. J. D. 1984. Flux Decline in Protein Ultrafiltration. J. Membr. Sci. 21: 269–283.

Balakrishnan, M., Agarwal, G.P. 1996. Gas Sparging to Enhance Permeate Flux in Ultrafiltration Using Hollow Fiber Membrane. J. Membr. Sci. 112: 47–74.

FernaÌndez, A., Riera, F.A. 2012. Membrane Fractionation of a beta-Lactoglobulin Tryptic Digest: Effect of the Hydrolysate Concentration. Ind. Eng. Chem. Res. 51(48): 15738–15744.

Vandanjon, L., Cros, S., Jaouen, P., Quéméneur, F., Bourseau, P. 2002. Recovery by Nanofiltration and Reverse Osmosis of Marine Flavours From Seafood Cooking Waters. Desalination. 144(1): 379–385.

Almécija, M. C., Ibáñez, R., Guadix, A., Guadix, E. M. 2007. Effect of pH on the Fractionation of Whey Proteins with a Ceramic Ultrafiltration Membrane. J. Membr. Sci. 288: 28–35.

Sarkar, P., Ghosh, S., Dutta, S., Sen, D., Bhattacharjee, C. 2009. Effect of Different Operating Parameters on the Recovery of Proteins from Casein Whey Using a Rotating Disc Membrane Ultrafiltration Cell. Desalination. 249(1): 5–11.

Ghosh, R., Cui, Z.F. 1998. Fractionation of BSA and Lysozyme Using Ultrafiltration: Effect of pH and Membrane Pretreatment. J. Membr. Sci. 139: 17–28.

Rabiller, B.M., Chaufer, B., Lucas, D., Michel, F. 2001. Ultrafiltration of Mixed Protein Solutions of Lysozyme and Lactoferrin: Role of Modified Inorganic Membranes and Ionic Strength on the Selectivity. J. Membr. Sci. 184(1): 137–148.

Downloads

Published

2014-09-02

How to Cite

Effect of Operating Parameters on Performance of Ultrafiltration (UF) to Fractionate Catfish Protein Hydrolysate. (2014). Jurnal Teknologi (Sciences & Engineering), 70(2). https://doi.org/10.11113/jt.v70.3427