Effect of Sintering Aid on CGO Electrolyte for the Fabrication of Low Cost, Structural-controlled Solid Oxide Fuel Cell

Authors

  • Krishnan Manakor Faculty of Petroleum & Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Siti Munira Jamil Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Hafiz Dzarfan Othman Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mukhlis A. Rahman Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Juhana Jaafar Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ahmad Fauzi Ismail Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v70.3432

Keywords:

Cerium-gadolinium oxide (CGO), lithium nitrate (LiNO3), sintering aid, micro-tubular solid oxide fuel cell (MT-SOFC), sintering temperature

Abstract

This paper reports the effort in reducing sintering temperature of cerium gadolinium oxide (CGO), a common intermediate temperature solid oxide fuel cell (SOFC) electrolyte, by doping it with lithium nitrate (LiNO3) at 1, 2 and 3 mol%. LiNO3-CGO/NiO-CGO electrolyte/anode dual-layer hollow fibre (HF) for micro-tubular SOFC has been developed in this study via brush painting technique. The developed dual-layer HFs, which are co-sintered at 900-1250°C with the interval of 50°C, characterized by mechanical strength and microstructural analysis. Benefit of this study is the reduction of the sintering temperature, which eventually contributes to the fabrication of low-cost SOFC. Moreover, brush painting technique provides great adhesion between anode and electrolyte layer during sintering. With the increasing sintering temperature and content of LiNO3, densification and the mechanical strength of the developed dual-layer HF increased. Based on the experimental works, a sintering temperature of 1150°C with 3 mol% of LiNO3 as sintering additive is recommended for the construction of the low cost dual-layer micro-tubular SOFCs.  

References

J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L. J. Gauckler. 2000. Solid State Ionics. 131: 79–96.

A. Isenberg. 1981. Solid State Ionics. 3–4: 431–437.

Herring and Conyers. 1950. Journal of Applied Physics. 21(5): 437.

R. Fuentes and R. Baker. 2008. International Journal of Hydrogen Energy. 33(13): 3480–3484.

C. Kleinlogel, and L. J. Gauckler. 2000. Solid State Ionics. 135: 567–573.

Pei-Lin Chen, and I-Wei Chen. 1996. Journal of the American Ceramic Society. 79(12): 3129–3141.

T. Zhang. 2004). Solid State Ionics. 167(1–2): 203–207.

M. H. D. Othman, Z. Wu, N. Droushiotis, G. H. Kelsall and K. Li. 2010. Journal of Membrane Science. 360(1–2): 410–417.

A. Jagota and C. Y Hui. 1991. Mechanics of Materials. 11(3): 221–234.

B. Henrich, A. Wonisch, T. Kraft, M. Moseller, and H. Riedel. 2007. Acta Materialia. 55(2): 753–762.

T. Rasp, C. Jamin, A. Wonisch, T. Kraft, and O. Guillon, O. 2012. Journal of the American Ceramic Society. 95(2): 586–592.

C. L. Martin, H. Camacho-Montes, L. Olmos, D. Bouvard, and R. K. Bordia. 2009. Journal of the American Ceramic Society. 92(7): 1435–1441.

Downloads

Published

2014-09-02

How to Cite

Effect of Sintering Aid on CGO Electrolyte for the Fabrication of Low Cost, Structural-controlled Solid Oxide Fuel Cell. (2014). Jurnal Teknologi (Sciences & Engineering), 70(2). https://doi.org/10.11113/jt.v70.3432