Preparation and Photocatalytic Activity of Mixed Phase Anatase/rutile TiO2 Nanoparticles for Phenol Degradation

Authors

  • Mohamad Azuwa Mohamed Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Wan Norharyati Wan Salleh Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Juhana Jaafar Faculty of Petroleum and Renewable Energy Enginneering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Norhaniza Yusof Faculty of Petroleum and Renewable Energy Enginneering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v70.3437

Keywords:

Mixed phase anatase/rutile, TiO2 nanoparticles, phenol degradation, calcination temperature, photocatalytic

Abstract

The evolution of desirable physico-chemical properties in high performance photocatalyst materials involves steps that must be carefully designed, controlled, and optimized. This study investigated the role of key parameter in the preparation and photocatalytic activity analysis of the mixed phase of anatase/rutile TiO2 nanoparticles, prepared via sol-gel method containing titanium-n-butoxide Ti(OBu)4 as a precursor material, nitric acid as catalyst, and isopropanol as solvent. The prepared TiO2 nanoparticles were characterized by means of XRD, SEM, and BET analyses, and UV-Vis-NIR spectroscopy. The results indicated that the calcination temperature play an important role in the physico-chemical properties and photocatalytic activity of the resulting TiO2 nanoparticles. Different calcination temperatures would result in different composition of anatase and rutile. The photocatalytic activity of the prepared mixed phase of anatase/rutile TiO2 nanoparticles was measured by photodegradation of 50 ppm phenol in an aqueous solution. The commercial anatase from Sigma-Aldrich and Degussa P25 were used for comparison purpose. The mixed phase of anatase/rutile TiO2 nanoparticles (consists of 38.3% anatase and 61.7% rutile) that was prepared at 400°C exhibited the highest photocatalytic activity of 84.88% degradation of phenol. The result was comparable with photocatalytic activity demonstrated by Degussa P25 by 1.54% difference in phenol degradation. The results also suggested that the mixed phase of anatase/rutile TiO2 nanoparticles is a promising candidate for the phenol degradation process. The high performance of photocatalyst materials may be obtained by adopting a judicious combination of anatase/rutile and optimized calcination conditions.

References

Chun, H., Yizhong, W., Hongxiao, T. 2000. Destruction of Phenol Aqueous Solution by Photocatalysis or Direct Photolysis. Chemosphere. 41: 1205–9.

Fan, H., Li, G., Yang, F., Yang, L., Zhang, S. 2011. Photodegradation of Cellulose under UV Light Catalysed by TiO2. J Chem Technol Biotechnol. 86: 1107–12.

Manilal, V. B., Haridas, A., Alexander, R., Surender, G. D. 1992. Photocatalytic Treatment of Toxic Organics in Wastewater: Toxicity of Photodegradation Products. Water Res. 26: 1035–8.

Scanlon, D. O., Dunnill, C. W., Buckeridge, J., Shevlin, S. A, Logsdail, A. J., Woodley, S. M., et al. 2013. Band Alignment of Rutile and Anatase TiO2. Nat Mater. 12: 798–801.

Ouzzine, M., Maciá-Agulló, J. A., Lillo-Ródenas, M. A., Quijada, C., Linares-Solano, A. 2014. Synthesis of High Surface Area TiO2 Nanoparticles by Mild Acid Treatment with HCl or HI for Photocatalytic Propene Oxidation. Appl Catal B Environ. 154–155: 285–93.

Devilliers, D. 2006. Semiconductor Photocatalysis : Still an Active Research Area Despite Barriers to Commercialization. Energeia. 17: 1–6.

Wu, Q., Wu, Z., Li, Y., Gao, H., Piao, L., Zhang, T., et al. 2012. Controllable Synthesis and Photocatalytic Activity of Anatase TiO2 Single Crystals with Exposed {110} Facets. Chinese J Catal. 33: 1743–53.

Ohtani, B., Prieto-Mahaney, O. O., Li, D., Abe, R. 2010. What is Degussa (Evonik) P25? Crystalline Composition Analysis, Reconstruction from Isolated Pure Particles and Photocatalytic Activity Test. J Photochem Photobiol A Chem. 216: 179–82.

You, Y. F., Xu, C. H., Xu, S. S., Cao, S., Wang, J. P., Huang, Y. B., et al. 2014. Structural Characterization and Optical Property of Tio2 Powders Prepared by the Sol–Gel Method. Ceram Int. 40: 8659–66.

Ao, Y., Xu, J., Fu, D., Shen, X., Yuan, C. 2008. Low Temperature Preparation of Anatase TiO2-coated Activated Carbon. Colloids Surfaces A Physicochem Eng Asp. 312: 125–30.

Li, S., Ye, G., Chen, G. 2009. Low-Temperature Preparation and Characterization of Nanocrystalline Anatase TiO2. J Phys Chem C. 113: 4031–7.

Cimieri, I., Poelman, H., Ryckaert, J., Poelman, D. 2013. Novel Sol–gel Preparation of V-TiO2 Films for the Photocatalytic Oxidation of Ethanol in Air. J Photochem Photobiol A Chem. 263: 1–7.

Ananth, S., Arumanayagam, T., Vivek, P., Murugakoothan, P. 2014. Direct Synthesis of Natural Dye Mixed Titanium Dioxide Nano Particles By Sol–gel Method for Dye Sensitized Solar Cell Applications. Opt - Int J Light Electron Opt. 125: 495–8.

You, Y., Zhang, S., Wan, L., Xu, D. 2012. Preparation of Continuous TiO2 Fibers by Sol–Gel Method and Its Photocatalytic Degradation on Formaldehyde. Appl Surf Sci. 258: 3469–74.

Liu, X. 2012. Preparation and Characterization of Pure Anatase Nanocrystals by Sol–gel Method. Powder Technol. 224: 287–90.

Bakardjieva, S., Šubrt, J., Štengl, V., Dianez, M. J., Sayagues, M. J. 2005. Photoactivity of Anatase–rutile TiO2 Nanocrystalline Mixtures Obtained by Heat Treatment of Homogeneously Precipitated Anatase. Appl Catal B Environ. 58: 193–202.

Mahshid, S., Askari, M., Sasani, Ghamsari, M., Afshar, N., Lahuti, S. 2009. Mixed-phase TiO2 Nanoparticles Preparation Using Sol–gel Method. J Alloys Compd. 478: 586–9.

Moharram, A. H., Mansour, S. A., Hussein, M. A., Rashad, M. 2014. Direct Precipitation and Characterization of ZnO Nanoparticles. J Nanomater. 2014: 1–5.

Li, Z., Liu, R., Xu, Y. 2013. Larger Effect of Sintering Temperature Than Particle Size on the Photocatalytic Activity of Anatase TiO2. J Phys Chem C. 117: 24360–7.

Ao, Y., Xu, J., Fu, D., Shen, X., Yuan, C. 2008. Low Temperature Preparation of Anatase TiO2-coated Activated Carbon. Colloids Surfaces A Physicochem Eng Asp. 312: 125–30.

Wang, W., Serp, P., Kalck, P., Faria, J. L. 2005. Visible light Photodegradation of Phenol on MWNT-TiO2 Composite Catalysts Prepared by a Modified Sol–gel Method. J Mol Catal A Chem. 235: 194–9.

Zhang, J. Y., Boyd, I.W., O’Sullivan, B. J., Hurley, P. K., Kelly, P. V., Sénateur, J. P. 2002. Nanocrystalline TiO2 Films Studied by Optical, XRD and FTIR Spectroscopy. J Non Cryst Solids. 303: 134–8.

Ruzimuradov, O., Nurmanov, S., Hojamberdiev, M., Prasad, R. M., Gurlo, A., Broetz, J., et al. 2014. Fabrication of Nitrogen-doped Tio2 Monolith with Well-defined Macroporous and Bicrystalline Framework and Its Photocatalytic Performance Under Visible Light. J Eur Ceram Soc. 34: 809–16.

Zhang, Q., Wang, J., Yin, S., Sato, T., Saito, F. 2004. Synthesis of a Visible-Light Active TiO 2 ؊ x S x Photocatalyst by Means of Mechanochemical Doping. Journal of the American Ceramic Society. 1163: 1161–3.

Ohno, T. 2004. Preparation of Visible Light Active S-doped TiO2 Photocatalysts and Their Photocatalytic Activities. Water Sci Technol. 49: 159–63.

Chen, Q., Liu, H., Xin, Y., Cheng, X. 2013. TiO2 nanobelts–Effect of Calcination Temperature on Optical, Photoelectrochemical and Photocatalytic Properties. Electrochim Acta. 111: 284–91.

Li, S., Ye, G., Chen, G. 2009. Low-Temperature Preparation and Characterization of Nanocrystalline Anatase TiO2. J Phys Chem C. 113: 4031–7.

Devilliers, D. 2006. Semiconductor Photocatalysis : Still an Active Research Area Despite Barriers to Commercialization. Energeia. 17: 1–6.

Fujishima, A., Rao, T. N., Tryk, D. A. 2000. Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev. 1: 1–21.

Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., Batzill, M. 2014. Why is anatase a better photocatalyst than rutile?--Model studies on epitaxial TiO2 films. Sci Rep. 4: 4043.

Zhang, Y., Chen, J., Li, X. 2010. Preparation and Photocatalytic Performance of Anatase/Rutile Mixed-Phase TiO2 Nanotubes. Catal Letters. 139: 129–33.

Downloads

Published

2014-09-02

How to Cite

Preparation and Photocatalytic Activity of Mixed Phase Anatase/rutile TiO2 Nanoparticles for Phenol Degradation. (2014). Jurnal Teknologi, 70(2). https://doi.org/10.11113/jt.v70.3437