Preparation of High Performance SPEEK/Cloisite 15A Nanocomposite Membrane via Advanced Membrane Formulation Method

Authors

  • Juhana Jaafar Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • A. F. Ismail Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • T. Matsuura Industrial Membrane Research Laboratory, Department of Chemical Engineering University of Ottawa, 161 Louis Pasteur St., Ottawa, ON, KIN 6N5, Canada
  • M. H. D. Othman Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Mukhlis A. Rahman Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • N. Yusof Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • W. J. Lau Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v70.3444

Keywords:

SPEEK, Cloisite 15A®, 2, 4, 6-triaminopyrimidine, nanocomposite, DMFC

Abstract

Sulfonated poly (ether ether ketone) (SPEEK)/Cloisite 15A® nanocomposite membranes were prepared via solution intercalation method. For better dispersion of nanoclay in the polymer matrix, the solution intercalation method was modified and a compatibilizer was introduced. The state of nanoclay dispersion was determined by FESEM. The effect of the solution formulation preparation method and compatibilizer on the performance properties such as proton conductivity and methanol permeability of all membranes was studied. FESEM analysis confirmed that SPEEK/Cloisite 15A® nanocomposite membrane prepared via modified solution intercalation method and in the presence of compatibilizer was the best membrane in terms of its morphological structure. Due to its well nanoclay distribution in polymer matrix, this kind of membrane exhibited the highest selectivity owing to its high proton conductivity and low methanol permeability. SPEEK/Cloisite 15A® with compatibilizer prepared via modified solution intercalation method was found to be the best membrane. 

References

Thomassin, J. M., Pagnoulle, C., Caldarella, G., Germain, A., Jerome, R. 2006. Contribution of Nanoclays to the Barrier Properties of a Model Proton Exchange Membrane for Fuel Cell Application. J. Membr. Sci. 270: 50–56.

Lin, Y. F., Yen, C. Y., Hung, C. H., Hsiao, Y. H., Ma, C. C. M. 2007. A Novel Composite Membranes Based on Sulfonated MMT Modified Nafion for DMFC. J. Power Source. 168: 162–166.

Chuang, S. W., Hsu, S. L. C., Hsu, C. L. 2007. Synthesis and Properties of Fluorine-containing Polybenzimidazole/Montmorillonite Nanocomposite Membranes fFor Direct Methanol Fuel Cell Applications. J. Power Sources. 168: 172–177.

Wang, M., Dong, S. 2007. Enhanced Electrochemical Properties of Nanocomposite Polymer Electrolyte Based on Copolymer with Exfoliated Clays. J. Power Sources. 170: 425–432.

Gosalawit, R., Chirachanchai, S., Shishatskiy, S., Nunes, S. P. 2008. Sulfonated Montmorillonite/sulfonated Poly(ether ether ketone) (SMMT/SPEEK) Nanocomposite Membrane f0or Direct Methanol Fuel Cells (DMFCs). J. Membr. Sci. 323: 337–346.

Hasani-Sadrabadi, M. M., Dashtimoghadam, E., Ghaffarian, S. R., Hasani Sadrabadi, M. H., Heidari, M., Moaddel, H. 2010. Novel High-performance Nanocomposite Proton Exchange Membranes Based on Poly (ether sulfone). Renewable Energy. 35: 226–231.

Tripathi, B. P., Kumar, M., Shahi, V. K. 2009. Highly Stable Proton Conducting Nanocomposite Polymer Electrolyte Membrane (PEM) Prepared by Pore Modifications: An Extremely Low Methanol Permeable PEM. J. Membr. Sci. 327: 145–154.

Villaluenga, J. P. G., Khayet, M., Valentin, J. L., Seoane, B., Mengual, J. I. 2007. Gas Transport Properties of Polypropylene/clay Composite Membranes. Eur. Polym. J. 43: 1132–1143.

Jaafar, J., Ismail, A.F., Matsuura, T. 2009. Preparation and Barrier Properties of SPEEK/Cloisite 15A®/TAP Nanocomposite Membrane For DMFC Application. J. Membr. Sci. 345: 119–127.

Kim, T. K., Kang, M., Choi, Y. S., Kim, H. K., Lee, W., Chang, H., Seung, D. 2007. Preparation of Nafion-sulfonated Clay Nanocomposite Membrane for Direct Methanol Fuel Cells via a Film Coating Process. J. Power Sources. 165: 1–8.

Nunes, S. P., Ruffmann, Rikowski, B. E., Vetter, S., Richau, K. 2002. Inorganic Modification of Proton Conductive Polymer Membranes for Direct Methanol Fuel Cells. J. Membr. Sci. 203: 215–225.

Iwata, M., Adachi, T., Tomidokoro, M., Noble, R. D. 1996. Organic-Inorganic Gas Separation Membranes: Preparation and Characterization. J. Membr. Sci. 116: 211–220.

Jaafar, J., Ismail, A. F., Mustafa, A. 2007. Physicochemical Study of Poly(Ether Ether Ketone) Electrolyte Membranes Sulfonated with Mixtures of Fuming Sulfuric Acid and Sulfuric Acid for Direct Methanol Fuel Cell Application. Mater. Sci. Eng., A. 460–461: 475–484.

Ismail, A. F., Othman, N. H., Mustafa, A. 2009. Sulfonated Polyether Ether Ketone Composite Membrane Using Tungstosilicic Acid Supported on Silica–aluminium Oxide for Direct Methanol Fuel Cell (DMFC). J. Membr. Sci. 329: 18–29.

Cervantes-Uc, J. M., Cauich-Rodr´ıguez, J. V., Torres, H. V., Garfias-Mes´ıas, L. F., Paul, D. R. 2007. Thermal Degradation of Commercially Available Organoclays Studied by TGA-FTIR. Thermochim. Acta. 457: 92–102.

Libby, B., Smyrl, W. H., Cussler, E. L. 2003. Polymer-zeolite Composite Membrane for Direct Methanol Fuel Cells. AIChE J. 49: 991–1001.

Downloads

Published

2014-09-02

How to Cite

Preparation of High Performance SPEEK/Cloisite 15A Nanocomposite Membrane via Advanced Membrane Formulation Method. (2014). Jurnal Teknologi (Sciences & Engineering), 70(2). https://doi.org/10.11113/jt.v70.3444