A Review on Ultrasonic Process Tomography System

Authors

  • Sallehuddin Ibrahim Control and Mechatronic Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Amri Md Yunus Control and Mechatronic Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Taufiq Md Khairi Control and Mechatronic Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mahdi Faramarzi Control and Mechatronic Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v70.3452

Keywords:

Process, sensor, tomography, ultrasound

Abstract

The advantage of using a tomography system is that it provides visualization of component distributions inside a pipe or a process vessel. Tomography is widely used in the medical field. Due to its non-intrusive nature, tomography has caught the interest of various researchers in process applications. There is an extensive research using ultrasonic tomography for various applications. This paper is a review which expounds the principles of ultrasonic tomography systems, the hardware, and the software used in such systems.

References

Beyer, R. T. 1999. Sounds of Our Times: Two Hundred Years of Acoustics. New York: Springer-Verlag. 246.

York. T. 2001. Status of Electrical Tomography in Industrial Applications. Journal of Electronic Imaging. 10(3): 606–619.

Ibrahim S., and Saad M. S. 2007. Concentration and Velocity Measurement of Flowing Object Using Optical and Ultrasonic Tomography. Proceeding First International. Conference on Control, Instrumentation and Mechatronics. Johor. Malaysia.

Li, W., and Hoyle, B. S. 1996. Ultrasonic Process Tomography Using Multiple Active Sensors for Maximum Real Time Performance. Chemical Engineering Science. 52: 2161–2170.

Asher, R. C. 1983. Ultrasonic Sensors in the Chemical, and Process Industries. Journal Science Instrument Physics. 16: 959–963.

Ensminger. D. 2012. Ultrasonics:Fundamentals, Technologies, and Applications. Third Edition. CRC Press.

Novelline, R. 1997. Squire's Fundamentals of Radiology. 5th ed. Harvard University Press. 34–35.

Pollet. B. 2012. Power Ultrasound in Electrochemistry: From Versatile Laboratory Tool to Engineering Solution John Wiley & Sons.

http://www.mrcophth.com/commonultrasoundcases/principlesof ultrasound.html

Maezawa, W., Uchida, S., & Okamura, S. 1995. A Model of Simultaneous Measurement of Gas and Solid Holdup in a Bubble Column Using Ultrasonic Technique. Canadian Journal of Chemical Engineering. 73: 734–743.

Abdul Rahim. R., Fazalul Rahiman, M. H., Chan, K. S., Nawawi, S. W. 2007. Non-invasive Imaging of Liquid/Gas Flow using Ultrasonic Transmission-Mode Tomography. Sensors and Actuators A: Physical, 135(2): 337–345.

Fazalul Rahiman, M. H., Ruzairi Abdul Rahim, Mohd Hezri Fazalul Rahiman, and Mazidah Tajjudin. 2006. Ultrasonic Transmission-Mode Tomography Imaging for Liquid/Gas Two-Phase Flow. IEEE Sensors. 6(6): 1706–1715.

Nor Ayob, N. M., Fazalul Rahiman, M. H., Sazali Yaacob, Ruzairi Abdul Rahim. 2009. Ultrasound Processing Circuitry for UltrasonicTomography, Proceedings of the International Conference on Man-Machine Systems. Penang. Malaysia.

Abdul Wahab, Y., R. Abdul Rahim , M.H. Fazalul Rahiman, and M. A. Ahmad. 2011. Application of Transmission-mode Ultrasonic Tomography to Identify Multiphase Flow Regime, Proc. International Conference on Electrical, Control and Computer Engineering (INECCE). Pahang, Malaysia.

Steiner, G., and Podd, F. 2006. A Non-invasive and Non-intrusive Ultrasonic Transducer Array for Process Tomography. Proc. XVIII IMEKO World Congress. Rio de Janeiro, Brazil.

Lasaygues, P., J. P. Lefebvre and M. Bouvat-Merlin. 2002. High-Resolution Process in Ultrasonic Reflection Tomography. Acoustical Imaging. 24: 35–41.

Steiner, G., and D. Watzenig. 2008. A Bayesian Filtering Approach for Inclusion Detection with Ultrasound Reflection Tomography. Journal of Physics: Conference Series. 124.

Steiner, G., Frank Podd, Markus Brandner and Daniel Watzenig. 2006. Iterative Model-based Image Reconstruction for Ultrasound Process Tomography. Proceeding XVIII IMEKO World Congress. Rio de Janeiro, Brazil.

Brancheriau, L., Eric Debieu P. L., and Lefebvre, J. P. 2008. Ultrasonic Tomography of Green Wood Using a Non-parametric Imaging Algorithm With Reflected Waves. Ann. For. Sci. 65: 712.

Malyarenko, E. V. and M. K. Hinders. 2001. Ultrasonic Lamb Wave Diffraction Tomography. Ultrasonics. 39: 269–281.

Pintavirooj C., and M. Sangworasil, Ultrasonic Diffraction Tomography. 2008. International Journal of Applied Biomedical Engineering. 1(1): 34–40.

Pratt, R. G., and Worthington, M. H. 1988. The Application of Diffraction Tomography to Cross-hole Seismic Data. Geophysics. 53(10): 1284–1294.

Shekhar, S. 2012. Online Non Destructive Evaluation of Large Pipe Lines and Cylindrical Structures Using Guided Ultrasonic Wave Diffraction Tomography. International Journal of Engineering and Advanced Technology. 1: 480–485

R. Abdul Rahim, L. C. Leong, K. S. Chan, M. H. Rahiman and J. F. Pang. 2008. Real Time Mass Flow Rate Measurement Using Multiple Fan Beam Optical Tomography. The Instrumentation, Systems and Automation Society (ISA) Transactions Journal. 47: 3–14.

Z. Zakaria, M. H. Fazalul Rahiman, R. Abdul Rahim, M. S. A. Megat Ali, M. Y. Baharuddin, A. H. Jahidin. 2009. Small Scale Imaging Using Ultrasonic Tomography. Journal of Nuclear and and Related Technologies. 6(1): Special Edition, 26–281

Fazalul Rahiman, M. H., Zulkarnay Zakaria, Ruzairi Abdul Rahim Wei Nyap Ng. 2009. Ultrasonic Tomography Imaging Simulation of Two-phase Homogeneous Flow. Sensor Review. 29/3: 266–276.

Bela G. Liptak. 2003. Instrument Engineers’ Handbook: Process Control and Optimization. CRC Press.

Dickin, F. J., B. S. Hoyle, A. Hunt, S. M. Huang. 1992. Tomographic Imaging of Industrial Process Equipment: Techniques and Applications. IEE Proceedings-G. 139(1).

Inaki Schlaberg, H., Frank J. W. Podd, B. H. 2000. Ultrasound Process Tomography System for Hydrocyclones. Ultrasonics. 38: 813–816.

Garcia-Stewart, A., Polydorides, N., Ozanyan, K.B., and McCann, H. 2003. Image Reconstruction Algorithms for High-speed Chemical Species Tomography. Proc. of the 3rd World Congress on Industrial Process Tomography. Canada.

Fazalul Rahiman M. H., Abdul Rahim. R., Abdul Rahim, H., Mohd Muji, S. Z., and Mohamad, E. J. 2012. Ultrasonic Tomography–Image Reconstruction Algorithms. International Journal of Innovative Computing, Information and Control. 8(1B): 527–538.

Muhammad Dani S., Yoshifumi M., Akinori M., Shigeo U. 2007. The Investigation of Gas Holdup Distribution in a Two-Phasebubble Column Using Ultrasonic Computed Tomography. Chemical Engineering Journal. 130: 125–133.

Utomo, M. N., Warsito, T. Sakai, S. Uchida. 2001. Analysis of Distributions of Gas and TiO2 Particles in Slurry Bubble Column Using Ultrasonic Computed Tomography. Chemical Engineering Science. 56: 6073–6079.

Abdul Rahim. R., Fazalul Rahiman, M. H., and Mohd Taib, M. N. 2005. Non-Invasive Ultrasonic Tomography: Liquid/Gas Flow Visualization, Proceeding First International Conference on Computers, Communications, & Signal Processing with Special Track on Biomedical Engineering.

Yang, M., Schlaberg, H. I., Hoyle. B. S., Beck, M. S., Lenn, and C. 1999. Real-Time Ultrasound Process Tomography for Two-Phase Flow Imaging Using a Reduced Number of Transducers. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 46: 492–501.

Downloads

Published

2014-09-08

How to Cite

A Review on Ultrasonic Process Tomography System. (2014). Jurnal Teknologi, 70(3). https://doi.org/10.11113/jt.v70.3452