Nano-Sensor for Single Cell Thermal Characterization

Authors

  • Salma Abdullah Binslem Dept. of Control and Mechatronic Engineering, Faculty of Electrical Eng., Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Ridzuan Ahmad Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v70.3468

Keywords:

Single cell, thermal properties, thermistor based nano-needle, finite element analysis

Abstract

A cell’s intracellular temperature has been shown to have a vital role in controlling the cell’s properties, activities and reacting to external stimuli. Yet, current conventional methods are unable to give any measurements when spatial resolution decreases to a micro scale. Many researchers from different fields are trying to develop ways that give high accuracy and high temperature sensitivity. We present a nano-needle microfluidic system for single cell temperature measurement. Here we discuss optimization using the finite element approach to sensor design using tungsten as the electrode and semiconducting metal oxide Co3O4 as the sensing element. The dimensions of the sensor that gave the highest voltage and, thus, the highest sensitivity ratio of 1:4 of the electrode cross sectional area / element diameter, were a gap of 450 nm between the electrodes and a penetration depth of 250 nm of the electrode into the element. Furthermore, the voltage response had a 48 µm difference over a range of 293.15–333.15. The sensor sensitivity was a 0.01° C and the response time was 1 ns.

References

D. Evanko. 2012. Sensors and Probes: A Thermometer for Cells. Nature Methods. 9(4): 328–328.

K. M. Mccabe and M. Hernandez. 2011. Molecular Thermometry. NIH Public Access. 67(5): 469–475.

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang. 2007. Single Quantum Dots as Local Temperature Markers. Nano Letters. 7(10): 3102–5.

D. Evanko. 2012. Sensors and Probes: A Thermometer for Cells. Nature Methods. 9(4): 328–328.

J. S. Donner, S.A.a Thompson, M. P. Kreuzer, G. Baffou, and R. Quidant. 2012. Mapping Intracellular Temperature Using Green Fluorescent Protein. Nano Letters. 12(4): 2107–11.

J.-M. Y. J.-M. Yang, H. Y. H. Yang, and L. L. L. Lin. 2010. Thermogenesis Detection of Single Living Cells via Quantum Dots. In Micro Electro Mechanical Systems MEMS 2010 IEEE 23rd International Conference on. 963–966

J. Lee, A. O. Govorov, and N. A. Kotov. 2005. Nanoparticle Assemblies with Molecular Springs: A Nanoscale Thermometer. Angewandte Chemie. 117(45): 7605–7608.

C. Espenel, M.-C. Giocondi, B. Seantier, P. Dosset, P.-E. Milhiet, and C. Le Grimellec. 2008. Temperature-dependent Imaging of Living Cells by AFM. Ultramicroscopy. 108(10): 1174–80.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama. 2009. Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry. Journal of the American Chemical Society. 131(8): 2766–7.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos. 2012. Thermometry at the Nanoscale. Nanoscale. 4(16): 4799–829.

C. Wang, R. Xu, W. Tian, X. Jiang, Z. Cui, M. Wang, H. Sun, K. Fang, and N. Gu. 2011. Determining Intracellular Temperature at Single-cell Level by a Novel Thermocouple Method. Cell Research. 21(10): 1517–9.

A. Vyalikh, A. U. B. Wolter, S. Hampel, D. Haase, M. Ritschel, A. Leonhardt, H.-J. Grafe, A. Taylor, K. Krämer, B. Büchner, and R. Klingeler. 2008. A Carbon-wrapped Nanoscaled Thermometer for Temperature Control in Biological Environments. Nanomedicine. 3(3): 321–7.

N. Inomata, M. Toda, M. Sato, A. Ishijima, and T. Ono. 2012. Pico Calorimeter for Detection of Heat Produced in an Individual Brown Fat Cell. Applied Physics Letters. 100(15): 154104.

D. Gao, H. Liu, Y. Jiang, and J.-M. Lin. 2013. Recent Advances in Microfluidics Combined with Mass Spectrometry: Technologies and Applications. Lab on a Chip. 13(17): 3309–22.

Y. Zheng, J. Nguyen, Y. Wei, and Y. Sun. 2013. Recent Advances in Microfluidic Techniques for Single-cell Biophysical Characterization. Lab on a chip. 13(13): 2464–83.

M. Fortier, E. Bonneil, P. Goodley, P. Thibault, and C. Pharmaceuticals. 2005. Integrated Microfluidic Device for Mass Spectrometry-based Proteomics and Its Application to Biomarker Discovery Programs. Analytical Chemistry. 77(6): 1631–1640.

V. Lecault, A. K. White, A. Singhal, and C. L. Hansen. 2012. Microfluidic Single Cell Analysis: From Promise to Practice. Current Opinion in Chemical Biology. 16(3–4): 381–90.

Ahmad, M. R. Nakajima, M., Kojima, M., Kojima, S., Homma, M., & Fukuda, T. 2012. Instantaneous and Quantitative Single Cells Viability Determination Using Dual Nanoprobe Inside ESEM. Nanotechnology, IEEE Transactions on. 11(2): 298–306.

Sahoo, P., Djieutedjeu, H. & Poudeu, P. F. P. 2013. Co3O4 nanostructures: The Effect of Synthesis Conditions on Particles Size, Magnetism and Transport Properties. J. Mater. Chem. A1: 15022.

Liang, S., Gao, J. Q., Yang, J. F. & Luo, M. 2008. The Resistivity-Temperature Property of Transition Metal Oxide Co3O4 with In2O3. Addition. Mater. Sci. Forum. 569: 193–196.

Tritt, T. M. 2004. Thermal Conductivity: Theory, Properties, and Applications.(Springer) athttp://books.google.com.my/books?id=I9XRU9mtBeoC.

Downloads

Published

2014-09-08

How to Cite

Nano-Sensor for Single Cell Thermal Characterization. (2014). Jurnal Teknologi (Sciences & Engineering), 70(3). https://doi.org/10.11113/jt.v70.3468