Hyperspectral Imaging for Predicting Soluble Solid Content of Starfruit

Authors

  • Feri Candra Computer Vision, Video and Image Processing Research Lab,Electronics & Computer Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Syed Abd. Rahman Abu Bakar Computer Vision, Video and Image Processing Research Lab,Electronics & Computer Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia

DOI:

https://doi.org/10.11113/jt.v73.3480

Keywords:

Hyperspectral Imaging, Partial Least Square Regression, Starfruit

Abstract

Hyperspectral imaging technology is a powerful tool for non-destructive quality assessment of fruits. The objective of this research was to develop novel calibration model based on hyperspectral imaging to estimate soluble solid content (SSC) of starfruits. A hyperspectral imaging system, which consists of a near infrared  camera, a spectrograph V10, a halogen lighting and a conveyor belt system, was used in this study to acquire hyperspectral  images of the samples in visible and near infrared (500-1000 nm) regions. Partial least square (PLS) was used to build the model and to find the optimal wavelength. Two different masks were applied for obtaining the spectral data. The optimal wavelengths were evaluated using multi linear regression (MLR). The coefficient of determination (R2) for validation using the model with first mask (M1) and second mask (M2) were 0.82 and 0.80, respectively.

References

R. Amirulah, M.M. Mokji, and Z. Ibrahim. 2010. Implementation of starfruit maturity classification algorithm on embedded system. 2010 2nd International Conference on Signal Processing Systems. 1: 810–814. .http://dx.doi.org/10.1109/ICSPS.2010.5555248

A.F. Omar and M.Z. Matjafri. 2013. Specialized Optical Fiber Sensor for Nondestructive Intrinsic Quality Measurement of Averrhoa Carambola. Photonic Sensors. 3(3): 272–282. http://dx.doi.org/ 10.1007/s13320-013-0111-x

M.Z. Abdullah, J. Mohamad-Saleh, A.S. Fathinul-Syahir, and B.M.N. Mohd-Azemi. 2006. Discrimination and classification of fresh-cut starfruits (Averrhoa carambola L.) using automated machine vision system. J. Food Eng. 76(4): 506–523. http://dx.doi.org/10.1016/j.jfoodeng.2005.05.053

M. Mokji, S.A.R. Abu-Bakar. 2006. Starfruit Grading Based on 2-Dimensional Color Map. Regional Conference on Engineering and Science (RPCES). 203–206. http://eprints.utm.my/1691/1/musa2006_Starfruit_grading.pdf

M.F.A. Kamil, M. Mokji, U.U. Sheikh, and S.A.R. Abu-Bakar. 2010. Machine Vision for Starfruit (Averrhua Carambola) Inspection. 2010 Fourth Asia Int. Conf. Math. Model. Comput. Simul. 333–336. http://dx.doi.org/10.1109/AMS.2010.73

A.A. Gowen, C. Odonnell, P. Cullen, G. Downey, and J. Frias. 2007. Hyperspectral imaging – an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 18(12): 590–598. http://dx.doi.org/10.1016/j.tifs.2007.06.001

J. Qin, K. Chao, M.S. Kim, R. Lu, and T.F. Burks. 2013. Hyperspectral and multispectral imaging for evaluating food safety and quality. J. Food Eng. 118(2): 157–171 .http://dx.doi.org/10.1016/j.jfoodeng.2013.04.001

O. Kleynen, V. Leemans, and M.-F. Destain. 2003. Selection of the most efficient wavelength bands for ‘Jonagold’ apple sorting. Postharvest Biol. Technol. 30(3): 221–232. http://dx.doi.org/10.1016/S0925-5214(03)00112-1

J. Blasco and E. Molto. 2007. Hyperspectral detection of citrus damage with Mahalanobis kernel classifier. Electron. Lett. 43(20). http://dx.doi.org/10.1049/el:20070906

D.P. Ariana and R. Lu. 2008. Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging—Part II. Performance of a prototype. Sens. Instrum. Food Qual. Saf. 2(3): 152–160. http://dx.doi.org/10.1007/s11694-008-9058-9

D.P. Ariana and R. Lu. 2010. Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. J. Food Eng. 96(4): 583–590. http://dx.doi.org/10.1016/j.jfoodeng.2009.09.005

Y. Peng and R. Lu. 2007. Prediction of apple fruit firmness and soluble solids content using characteristics of multispectral scattering images. J. Food Eng. 82(2): 142–152 http://dx.doi.org/10.1016/j.jfoodeng.2006.12.027

Y. Peng and R. Lu. 2005. Modelling multispectral scattering profiles for prediction of apple fruit firmness. Transactions of the ASAE. 48(1): 235–242. http://www.researchgate.net/publication/43257460_Modeling_multispectral_scattering_profiles_for_prediction_of_apple_fruit_firmness

F. Mendoza, R. Lu, and H. Cen. 2014. Grading of Apples based on Firmness and Soluble Solids Content using VIS/SWNIR spectroscopy and Spectral Scattering Techniques. J. Food Eng. 125: 59–68 http://dx.doi.org/10.1016/j.jfoodeng.2013.10.022

G. ElMasry, N. Wang, A. ElSayed, and M. Ngadi. 2007. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. J. Food Eng. 81(1): 98–107. http://dx.doi.org/10.1016/j.jfoodeng.2006.10.016

G.A. Leiva-Valenzuela, R. Lu, and J.M. Aguilera. 2013. Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging. J. Food Eng. 115(1): 91–98 http://dx.doi.org/10.1016/j.jfoodeng.2012.10.001

P. Rajkumar, N. Wang, G. EImasry, G.S.V. Raghavan, and Y. Gariepy. 2012. Studies on banana fruit quality and maturity stages using hyperspectral imaging. J. Food Eng. 108(1): 194–200. http://dx.doi.org/10.1016/j.jfoodeng.2011.05.002

A. Baiano, C. Terracone, G. Peri, and R. Romaniello. 2012. Application of hyperspectral imaging for prediction of physico-chemical and sensory characteristics of table grapes. Comput. Electron. Agric. 87: 142–151. http://dx.doi.org/10.1016/j.compag.2012.06.002

B. Cho, M.S. Kim, I. Baek, D. Kim, W. Lee, J. Kim, H. Bae, and Y. Kim. 2013. Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery. Postharvest Biol. Technol. 76: 40–49. http://dx.doi.org/10.1016/j.postharvbio.2012.09.002

N. Otsu. 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man. Cybern. C(1): 62–66. http://dx.doi.org/10.1109/TSMC.1979.4310076

K. Varmuza and P. Filzmoser. 2009. Introduction Multivariate Statistical Analysis in Chemometrics. CRC Press, Taylor & Francis Group

T. Mehmood, K.H. Liland, L. Snipen, and S. Sæbø. 2012. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 118: 62–69. http://dx.doi.org/10.1016/j.chemolab.2012.07.010

I.-G. Chong and C.-H. Jun. 2005. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 78(1–2): 103–112. http://dx.doi.org/10.1016/j.chemolab.2004.12.011

Downloads

Published

2015-02-09

Issue

Section

Science and Engineering

How to Cite

Hyperspectral Imaging for Predicting Soluble Solid Content of Starfruit. (2015). Jurnal Teknologi (Sciences & Engineering), 73(1). https://doi.org/10.11113/jt.v73.3480