Synthesis of Graphene Oxide Nanosheets via Modified Hummers’ Method and Its Physicochemical Properties

Authors

  • Mohamad Fahrul Radzi Hanifah Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Juhana Jaafar Advanced Membrane Technology Research Centre (AMTEC), Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Madzlan Aziz Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ahmad Fauzi Ismail Advanced Membrane Technology Research Centre (AMTEC), Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mukhlis A. Rahman Advanced Membrane Technology Research Centre (AMTEC), Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Hafiz Dzarfan Othman Advanced Membrane Technology Research Centre (AMTEC), Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v74.3555

Keywords:

Graphene oxide nanosheets, graphite, Hummers’ method, chemical oxidation, characterization

Abstract

The efficient synthesis of exfoliated graphene oxide nanosheets (GO) via modified Hummers’ method was successfully carried out. The physicochemical properties of GO were determined by Fourier transform infrared spectroscopy (FTIR), UV-visible spectrophotometry (UV-vis), x-ray diffraction analysis (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The graphite was fully oxidized by strong oxidizing agent caused the oxygen-containing functional groups such as C-O-C, C=O, and COOH were introduced into the graphite layers as analyzed by Raman and FTIR.  XRD pattern of GO showed 2θ of 12.0o with interlayer spacing ~ 7.37A which describe non uniform crystal structure with the addition of oxygen containing functional groups. UV-vis spectrum of GO exhibit maximum absorption peak at ~ 234 nm corresponding to the aromatic C=C bond with π-π* transition. The morphology of GO was observed to have flake-like shape and less transparent layers by TEM. The properties of synthesized GO suggest high potential in producing the high quality of graphene which is can be applied as the electrocatalyst support for direct methanol fuel cell application.


              

Author Biographies

  • Mohamad Fahrul Radzi Hanifah, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

                  
  • Juhana Jaafar, Advanced Membrane Technology Research Centre (AMTEC), Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

                   
  • Madzlan Aziz, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

                 
  • Ahmad Fauzi Ismail, Advanced Membrane Technology Research Centre (AMTEC), Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

               
  • Mukhlis A. Rahman, Advanced Membrane Technology Research Centre (AMTEC), Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

              
  • Mohd Hafiz Dzarfan Othman, Advanced Membrane Technology Research Centre (AMTEC), Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

             

References

H. J. Choi, S. M. Jung, J. M. Seo, D. W. Chang, L. Dai, J. B. Baek. 2012. Nano Energy. 1: 534–551.

Y. Jin, S. Huang, M. Zhang, M. Jia, D. Hu. 2013. Applied Surface Science. 268: 541–546.

C. Lee, X. Wei, J. W. Kysar, J. Hone. 2008. Science. 321: 385–388.

R. F. Service. 2009. Science. 324: 875–877.

A. A. Balandin, S.Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau.2008. Nano Letter. 8: 902-907.B. Notari. 1993. Catalysis Today. 18: 163.

E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma. 2009. Nano Letter. 9: 2255–2259.

T. Takamura, K. Endo, L. Fu, Y. P. Wu, K. J. Lee, T. Matsumoto. 2007. Eletrochimica Acta. 53: 1055–1061.

X. Wang, L. J. Zhi, K. Mullen. 2008. Nano Letters. 8: 323–327.

K. S. Novoselov, A. K. Geim, S. V. Morozov. 2004. Science. 306: 666–669.

K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, C. N. R. Rao. 2009. Journal of Physcal Chemistry C. 113: 4257–4259.

S. Lee, K. Lee, Z. H. Zhong. 2010. Nano Letters. 10: 4702–4707.

C. E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour, and A. R. Barron. 2009. Nano Letters. 9: 3460–3462.

J.Song, X. Wang, C. T. Chang. 2014. Journal of Nanomaterials. 6 pages.

N. M. Huang, H. N. Lim, C. H. Chia, M. A. Yarmo, M. R. Muhamad. 2011. International Journal of Nanomedicine. 6: 3443–3448.

X. Zhang, P. S. Kumar, V. Aravindan, H. H. Liu, J. Sundaramurthy, S. G. Mhaisalkar, H. M. Duong, S. Ramakrishna,S. Madhavi. 2012. The Journal of Physical Chemistry C. 116: 14780–14788.

D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff. 2010. Chem. Soc. Rev. 39: 228–240.

J. Chen, B. Yao, C. Li, G. Shi. 2013. Carbon. 64: 225–229.

L. Shahriary, A. A. Athawale. 2014. International Journal of Renewable Energy and Environmental Engineering. 2: 58–63.

M. Mitra, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee. 2013. Diamond and Related Materials. 37: 74–79.

P. Liu, Y. Huang, L. Wang. 2013. Synthetic Metals. 167: 25–30.

P. Song, X. Zhang, M. Sun, X. Cui, Y. Lin. 2012. RSC Advances. 2: 1168–1173.

X. Zhang X, K. Li, H. Li, J. Lu, Q. Fu, Y. Chu. 2014. Synthetic Metals. 193: 132–138.

Downloads

Published

2015-04-15

Issue

Section

Science and Engineering

How to Cite

Synthesis of Graphene Oxide Nanosheets via Modified Hummers’ Method and Its Physicochemical Properties. (2015). Jurnal Teknologi, 74(1). https://doi.org/10.11113/jt.v74.3555