Synthesis of Graphene Oxide Nanosheets via Modified Hummers’ Method and Its Physicochemical Properties
DOI:
https://doi.org/10.11113/jt.v74.3555Keywords:
Graphene oxide nanosheets, graphite, Hummers’ method, chemical oxidation, characterizationAbstract
The efficient synthesis of exfoliated graphene oxide nanosheets (GO) via modified Hummers’ method was successfully carried out. The physicochemical properties of GO were determined by Fourier transform infrared spectroscopy (FTIR), UV-visible spectrophotometry (UV-vis), x-ray diffraction analysis (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The graphite was fully oxidized by strong oxidizing agent caused the oxygen-containing functional groups such as C-O-C, C=O, and COOH were introduced into the graphite layers as analyzed by Raman and FTIR.  XRD pattern of GO showed 2θ of 12.0o with interlayer spacing ~ 7.37A which describe non uniform crystal structure with the addition of oxygen containing functional groups. UV-vis spectrum of GO exhibit maximum absorption peak at ~ 234 nm corresponding to the aromatic C=C bond with π-π* transition. The morphology of GO was observed to have flake-like shape and less transparent layers by TEM. The properties of synthesized GO suggest high potential in producing the high quality of graphene which is can be applied as the electrocatalyst support for direct methanol fuel cell application.
             Â
References
H. J. Choi, S. M. Jung, J. M. Seo, D. W. Chang, L. Dai, J. B. Baek. 2012. Nano Energy. 1: 534–551.
Y. Jin, S. Huang, M. Zhang, M. Jia, D. Hu. 2013. Applied Surface Science. 268: 541–546.
C. Lee, X. Wei, J. W. Kysar, J. Hone. 2008. Science. 321: 385–388.
R. F. Service. 2009. Science. 324: 875–877.
A. A. Balandin, S.Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau.2008. Nano Letter. 8: 902-907.B. Notari. 1993. Catalysis Today. 18: 163.
E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma. 2009. Nano Letter. 9: 2255–2259.
T. Takamura, K. Endo, L. Fu, Y. P. Wu, K. J. Lee, T. Matsumoto. 2007. Eletrochimica Acta. 53: 1055–1061.
X. Wang, L. J. Zhi, K. Mullen. 2008. Nano Letters. 8: 323–327.
K. S. Novoselov, A. K. Geim, S. V. Morozov. 2004. Science. 306: 666–669.
K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, C. N. R. Rao. 2009. Journal of Physcal Chemistry C. 113: 4257–4259.
S. Lee, K. Lee, Z. H. Zhong. 2010. Nano Letters. 10: 4702–4707.
C. E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour, and A. R. Barron. 2009. Nano Letters. 9: 3460–3462.
J.Song, X. Wang, C. T. Chang. 2014. Journal of Nanomaterials. 6 pages.
N. M. Huang, H. N. Lim, C. H. Chia, M. A. Yarmo, M. R. Muhamad. 2011. International Journal of Nanomedicine. 6: 3443–3448.
X. Zhang, P. S. Kumar, V. Aravindan, H. H. Liu, J. Sundaramurthy, S. G. Mhaisalkar, H. M. Duong, S. Ramakrishna,S. Madhavi. 2012. The Journal of Physical Chemistry C. 116: 14780–14788.
D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff. 2010. Chem. Soc. Rev. 39: 228–240.
J. Chen, B. Yao, C. Li, G. Shi. 2013. Carbon. 64: 225–229.
L. Shahriary, A. A. Athawale. 2014. International Journal of Renewable Energy and Environmental Engineering. 2: 58–63.
M. Mitra, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee. 2013. Diamond and Related Materials. 37: 74–79.
P. Liu, Y. Huang, L. Wang. 2013. Synthetic Metals. 167: 25–30.
P. Song, X. Zhang, M. Sun, X. Cui, Y. Lin. 2012. RSC Advances. 2: 1168–1173.
X. Zhang X, K. Li, H. Li, J. Lu, Q. Fu, Y. Chu. 2014. Synthetic Metals. 193: 132–138.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.