TREND IN GROUND-BASED GPS SENSING OF ATMOSPHERIC WATER VAPOUR: THE MALAYSIAN PERSPECTIVE

Authors

  • Yusuf Drisu Opaluwa GNSS & Geodynamics Research Group, Faculty of Geoinformation & Real Estate,Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohammed Faiz Norazmi GNSS & Geodynamics Research Group, Faculty of Geoinformation & Real Estate,Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Tajul Ariffin Musa GNSS & Geodynamics Research Group, Faculty of Geoinformation & Real Estate,Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Rusli Othman GNSS & Geodynamics Research Group, Faculty of Geoinformation & Real Estate,Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Etim Eyo GNSS & Geodynamics Research Group, Faculty of Geoinformation & Real Estate,Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v71.3824

Keywords:

GPS meteorology, Atmospheric water vapour, Zenith path delay, Slant path delay, integrated

Abstract

Atmospheric water vapour is the most variable component of the atmosphere. It plays a crucial role in Earth‘s energy balance and hydrological cycles. Because of its temporal and spatial variability, accurate measurement of atmospheric water vapour has been very challenging in meteorology. However, the Global Positioning System (GPS) offers detailed coverage, all weather and continuous observations. Therefore, exploring this potential to deliver atmospheric information is now termed ‗GPS meteorology‘. This paper presents a brief overview of global trend in GPS meteorology while discussing GPS meteorology research efforts in Malaysia. A summary of the current research activity towards realisation of operational use of GPS meteorology in Malaysia is also highlighted.

References

Anthes, R. A. 2011. Exploring Earth‘s Atmosphere with Radio Occultation: Contributions to Weather, Climate and Space Weather. Atmos. Meas. Tech.4 : 1077–1103.

Bai, Z. 2004. Near-Real-Time GPS Sensing of Atmospheric Water Vapour. PhD. Thesis, Faculty of Built Environment and Engineering, Queensland University of Technology, Australia.

Bean, B. R. and Dutton, E. J. 1966. Radio meteorology. National Bureau of Standard Monograph 92, 435 US Department of Commerce.

Bevis, M., S. Businger, T.A. Herring, C. Rocken, R.A. Anthes and R.H. Ware (1992): GPS Meteorology: Sensing Of Atmospheric Water Vapor Using the Global Positioning System, Journal of Geophysical Research, Vol. 97, No. D14, pp. 15787-15801.

Bevis, M., S. Businger, S. Chiswell, T.A. Herring, R.A. Anthes, C. Rocken and R. Ware. 1994. GPS Meteorology: Mapping Zenith Wet Delays Onto Precipitable Water. Journal of Applied Meteorology. 33 : 379–386.

Bursinger, S. 2009. Applications of GPS in Meteorology. Presentation at CGSIC Regional Meeting. Honolulu, Hawaii. June. 23 – 24.

Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. E. and Elgered, G. 1985: Geodesy by Radio Interferometry: Effects of Atmospheric Modelling on Estimates of Baseline Length. Radio Science. 20 (6) : 1593–1607.

De Haan, S., I. Holleman and A. A. M. Holtslag. 2009. Real-Time Water Vapor Maps from a GPS Surface Network: Construction, Validation, and Applications. J. App. Met. & Clim. 48 : 1302–1316.

Dousa, J. 2008. Processing of Ground-based GNSS Data to Produce Near Real Time (NRT) Tropospheric Zenith Path Delays (ZTD). Paper Presented at E-GVAP (EUMETNET GPS Water Vapour Programme). Workshop November 6, DMI; Copenhagen.

Elgered, G., J. L. Davis, T. A. Herring, and I. I. Shapiro. 1991. Geodesy by Radio Interferometry: Water Vapour Radiometry for Estimation of Wet Delay. Journal of Geophysical Research. 96(B4) : 6541–6555. April 10.

E-GVAP. 2008. E-GVAP Meteorology and geodesy synergy. E-GVAP (EUMETNET GPS Water Vapour Programme) Workshop November 6. DMI. Copenhagen.

Foelsche. U and G. Kirchegast. 2001. Tropospheric Water vapour imaging by Combination of Ground-based and Spaceborne GNSS Sounding Data. J. Geophys. Res, 106, (D21). 27 : 221–231.

Giannini, A., M. Biasutti, I. M. Held and A. H, Sobel. 2008. A Global Perspective on African Climate. Climate Change. 90 : 359–383.

Ghoddousi-Fard, R. 2009. Modelling Tropospheric Gradients and Parameters from NWP Models: Effects on GPS Estimates. PhD. Dissertation. University of New Brunswick, Canada

Guerova, G. 2003. Derivation of Integrated Water Vapour (IWV) from the ground - based GPS estimates of Zenith Total Delay (ZTD). Dept. of Microwave Physics, Institute of Applied Physis, University of Bern, Bern, Switzerland.

Hofmann-Wellenhof, B., H. Lichtenegger, J. Collins, 2001. Global Positioning System: Theory and Practice. 5th edition Springer-Verlag Wien. New York.

Ishihara, M. 2005. GPS Meteorology at Japan Meteorological Agency. CIMO. Expert Team on Remote Sensing. Upper-Air Technology and Techniques. March, Geneva, Switzerland. 14–17.

Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy. 1997. Observing Earth‘s atmosphere with Radio Occultation Measurements using the Global Positioning System. J.Geophys. Res. 102 : 23429–23465.

Lystad, S. L. 2011. Estimating ground precipitation by use of Data from the Global Navigation Satellite System (GNSS). Norwegian Meteorological Institute. Climate Report No. 17/2011, ISSN 1503-8025.

Mendes, V.B. 1999. Modelling the Neutral-Atmosphere Propagation Delay in Radiometric Space Techniques. PhD. Dissertation. University of New Brunswick, Frederiction, Canada.

Musa, T. A, S. Amir, R. Othman, S. Ses, K. Omar, K. Abdullah, S. Lim and C. Rizos. 2011. GPS Meteorology in a Low-Latitude Region: Remote Sensing of Atmospheric Water Vapour over the Malaysian Peninsula. Journal of Atmospheric and Solar Terrestrial Physics. 73 : 2410–2422.

Musa, T. A. 2007. Analysis of Residual Atmospheric Delay in the Low Latitude Regions Using Network-Based GPS Positioning. PhD. Thesis School of Surveying and spatial Information Systems. University of New South Wales, Sydney, Australia.

Musa, T A., S. Lim and C. Rizos. 2005. Low Latitude Troposphere: A Preliminary Study Using GPS CORS Data in South East Asia. In: proceedings of ION NTM 2005, 24-26 January, San Diego CA. 686–693.

Niell, A. E. 1996. Global Mapping Functions for the Atmosphere Delay at Radio Wavelength. J. Geophys. Res. 101 (B2) : 3227–3246.

Nordin, A. F., H. Jamil, A. Mohamed, and D. C. Leng Hua. 2009. Malaysia Real-Time Kinematic GNSS Network (MyRTKnet) in 2009 and Beyond. Presentation at the 7th FIG Regional Conference, Hanoi, Vietnam, 19-22 October. slide available at www.fig.net/pub/vietnam/ppt/

Rizos, C, S. Lim, T. A.Musa, S. Ses, A. Sharifuddin and K. Zhang. 2009. Atmospheric Remote Sensing using GNSS in the Australasian region: From Temperate Climates to the Tropics. In: Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium. 12–17July. Cape Town, South Africa.

Rizos, C. 2012. GNSS as an Atmosphere Observing Technology: The IGS Products & Plans. ACSER GNSS Remote Sensing Workshop. UNSW. Sydney, Australia. 5 December.

Rocken, C., R. Ware, T. VanHove, F. Solheim, C. Alber, and J. Johnson, M. Bevis, and S. Businger. 1993. Sensing atmospheric water vapour with the global positioning system. Geophys. Res. Lett. 20 : 2631–2634.

Saastamoinen, J. 1972. Atmospheric Correction for Troposphere and Stratosphere in Radio Ranging Of Satellites. Geophysical Monograph. 15 American Geophysical Union. Washington, D.C. 247–252.

Shariff, N. S. M., T. A. Musa, K. Omar, S. Ses, and K. A. Abdullah. 2010. Performance of Research-Based N-RTK Positioning System in ISKANDAR Malaysia. 2010 International Symposium on GPS/GNSS. Taipei, Taiwan. October 26-28.

Schueler, T. 2001. On Ground-Based GPS Tropospheric Delay Estimation. PhD. Dissertation. Universität der Bundeswehr München.

Smith, E. K. and S. Weintraub. 1953. The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies. Proceedings of I.R.E. 4 : 1035–1037.

Suparta, W., J. Adnan and M. A. M. Ali. 2011. Monitoring the Association between GPS PWV and Lightning Activity during the 2009 Winter Monsoon over Bangi Malaysia. International Conference on Environment Science and Engineering (ICESE 2011).

Suparta, W., J. Adnan and M. A. M. Ali. 2012. Monitoring of GPS Precipitable Water Vapour during the Severe Flood in Kelantan. Am. J. Applied Sci. 9 (6) : 825–831.

Tao, W. 2008. Near Real-Time GPS PPP-inferred water vapour system development and evaluation. M.Sc. Thesis. University of Calgary, Alberta Canada.

Thayer, G. D. 1974. An Improved Equation for the Radio Refractive Index of Air. Radio Science. 9(10) : 803–807.

Tsuda, T.; K. Heki; S. Miyazaki; K. Aonashi; K. Hirahara; H. Nakamura; M. Tobita; F. Kimata; T. Tabei; T. Matsushima; F. Kimura; M. Satomura; T. Kato and I. Naito. 1998. GPS meteorology project of Japan—exploring frontiers of geodesy. Research News. Earth Planets Space. 50(10).

Vedel, H. 2008. Expected Future Developments of Ground-based GNSS Meteorology. Slide Presented at E-GVAP (EUMETNET GPS Water Vapour Programme) Workshop November 6, DMI, Copenhagen.

Vedel, H, S. de Haan and J. Jones. 2008. About E-GVAP and the collaboration between geodesy and meteorology. Slide Presented at E-GVAP (EUMETNET GPS Water Vapour Programme) Workshop November 6, DMI Copenhagen.

Wang, J; L. Zhang; J. Braun; T. V. Hove; S. Worley; Z. Ji; T. Ning and G. Elgered. 2012. Monitoring Water Vapour Variability with Ground-based GPS Measurements: Diurnal cycle to long-term trend. UNAVCO. Science Workshop.

Wickert, J. G. Beyerle, M. Bender, Z. Deng, G. Dick, C. Falck, M. Ge, G. Gendt, S. Heise, N. Jakowski, G. Michalak, M.Ramatschi, T. Schmidt, S. Schön, M. Semmling. 2012. GNSS Atmosphere Sounding. Lecture Presented at Shanghai Summer School. Space Geodesy 22nd August.

Yahya, M. H., Md N. Kamarudin and Z. Nordin. 2009. The Impact of Monsoon Circulations on the Performance of Space-based Radio Navigation Satellites for Surveying Applications. 7th FIG Regional Conference Hanoi Vietnam. 19–22 October.

Downloads

Published

2014-12-29

How to Cite

TREND IN GROUND-BASED GPS SENSING OF ATMOSPHERIC WATER VAPOUR: THE MALAYSIAN PERSPECTIVE. (2014). Jurnal Teknologi (Sciences & Engineering), 71(4). https://doi.org/10.11113/jt.v71.3824